Skip to main content
Log in

Estimation and Determination of Isotropic Elastic Constants in Resonant Ultrasound Spectroscopy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Accurate measurement of elastic constants in resonant ultrasound spectroscopy (RUS) depends on a perfect matching in the calculated and measured mode frequencies of free vibration of the solid specimen under study. Calculation of these frequencies requires estimated values of the elastic constants of the material. The present work proposes and demonstrates a method to derive initial guess values of the essential parameters for an isotropic and homogeneous material from the acquired RUS spectra itself. Specimen samples are prepared in the shape of rectangular parallelepiped having nearly same cross-sectional dimension but with different lengths. For particular compression (shear) mode corresponding to length l, the frequency f is inversely proportional to l. The slope m of f versus 1/l plot equals half of the compression (shear) velocity and this in turn gives an estimate of \( c_{11} \) (\( c_{44} \)). With these parameters as the input guess parameters, RUS fitting method is executed to find out the best fit results. \( c_{44} \) obtained in this way is a good estimate close to its actual value. Further refinement of the parameter values is achieved by identifying volume oscillation mode frequencies for various sample lengths from the best fit frequency table of RUS output. The slope m of f versus 1/l plot for these modes corresponds to the bulk modulus (K). \( c_{11} \) calculated from K and \( c_{44} \) is a better estimate and a second step fitting method with these parameters as the input values gives final output values with improved accuracy. Elastic constants of commercially available specimens of aluminum, copper, lead, steel and brass are measured in this method assuming macroscopic homogeneity. Results are compared and found to be in good agreement with available literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holland, R.: Resonant properties of piezoelectric ceramic rectangular parallelepipeds. J. Acoust. Soc. Am. 43, 988 (1968)

    Article  Google Scholar 

  2. Demarest Jr., H.: Cube resonance method to determine the elastic constants of solids. J. Acoust. Soc. Am. 49, 768–775 (1971)

    Article  Google Scholar 

  3. Ohno, I.: Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals. J. Phys. Earth 24, 355–379 (1976)

    Article  Google Scholar 

  4. Migliori, A., Visscher, W.M., Brown, S.E., Fisk, Z., Cheong, S.-W., Alten, B., Ahrens, E.T., Kubat-Martin, K.A., Maynard, J.D., Huang, Y., Kirk, D.R., Gillis, K.A., Kim, H.K., Chan, M.H.W.: Elastic constants and specific-heat measurements on single crystals of La2CuO4. Phys. Rev. B 41, 2098–2102 (1990)

    Article  Google Scholar 

  5. Visscher, W.M., Migliori, A., Bell, T.M., Reinert, R.A.: On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am. 90, 2154–2162 (1991)

    Article  Google Scholar 

  6. Migliori, A., Sarrao, J.: Resonant Ultrasound Spectroscopy. Wiley, New York (1997)

    Google Scholar 

  7. Maynard, J.: The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. J. Acoust. Soc. Am. 91, 1754–1762 (1992)

    Article  Google Scholar 

  8. Stekel, A., Sarrao, J.L., Bell, T.M., Lei, M., Leisure, R.G., Visscher, W.M., Migliori, A.: Method for identification of the vibrational modes of a rectangular parallelepiped. J. Acoust. Soc. Am. 92(2) Pt 1, 663–668 (1992)

    Article  Google Scholar 

  9. Ogi, H., Sato, K., Asada, T., Hirao, M.: Complete mode identification for resonance ultrasound spectroscopy. J. Acoust. Soc. Am. 112(6), 2553–2557 (2002)

    Article  Google Scholar 

  10. Migliori, A., Maynard, J.D.: Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Rev. Sci. Instrum. 76, 121301–121307 (2005)

    Article  Google Scholar 

  11. Ogi, H., Takashima, K., Ledbetter, H., Dunn, M.L., Shimoike, G., Hirao, M., Bowen, P.: Elastic constants and internal friction of an SiC-fibre-reinforced Ti-alloy-matrix crossply composite: measurement and theory. Acta Mater. 47, 2787–2796 (1999)

    Article  Google Scholar 

  12. Ulrich, T.J., McCal, K.R., Guyer, R.A.: Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. J. Acoust. Soc. Am. 111(4), 1667–1674 (2002)

    Article  Google Scholar 

  13. Voigt, W.: Lehrbuch der Krystallphysik, p. 962. B G Teubner, Leipzig (1928)

    Google Scholar 

  14. Reuss, A.: Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Math Mech 9, 49–58 (1929)

    Article  Google Scholar 

  15. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. A 65, 349–354 (1952)

    Article  Google Scholar 

  16. Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10, 335–342 (1962)

    Article  MathSciNet  Google Scholar 

  17. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)

    Article  MathSciNet  Google Scholar 

  18. Simons, S.G., Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edn. MIT Press, Cambridge (1971)

    Google Scholar 

  19. Lee, S.S., Min, U.-S., Ahn, B.: Elastic constants determination of thin cold-rolled stainless steels by dynamic elastic modulus measurements. J. Mater. Sci. 33, 687–692 (1998)

    Article  Google Scholar 

  20. Ledbetter, H.M.: Monocrystal-polycrystal elastic constants of a stainless steel. Phys. Stat. Sol. (a) 85, 89–96 (1984)

    Article  Google Scholar 

Download references

Acknowledgement

The author is indebted to Dr. Jishnu Basu, Mr. Sudipta Barman, and Mr. Supriyo Barman for sample preparation and to Mrs. Papia Mondal and Mrs. Sankari Chakraborty for necessary technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnana Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, B. Estimation and Determination of Isotropic Elastic Constants in Resonant Ultrasound Spectroscopy. J Nondestruct Eval 39, 23 (2020). https://doi.org/10.1007/s10921-020-0664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-0664-8

Keywords

Navigation