Skip to main content

Advertisement

Log in

Inhibitory activities of phenylpropanoids from Lycopus lucidus on amyloid aggregation related to Alzheimer’s disease and type 2 diabetes

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The number of patients with Alzheimer’s disease (AD) and type 2 diabetes (T2D) is increasing rapidly, and thus more research has been focused on the relationship between these two age-related chronic diseases. According to the amyloid hypothesis, prevention of the aggregation of amyloid β (Aβ) and human islet amyloid polypeptide (hIAPP) is a promising strategy for AD and T2D. In this study, thioflavin-T assay and transmission electron microscopy were performed to evaluate the inhibitory effect of three phenylpropanoids isolated from Lycopus lucidus—schizotenuin A and lycopic acids A and B—on both Aβ and hIAPP fibrillization. All tested compounds exhibited similarly strong inhibitory activity toward amyloid aggregation. These results suggested that catechol moieties play important roles in the inhibition of amyloid plaque formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3 
Fig. 4

References

  1. Prashant B, Nadeeja W, Milindu L, Philip N, Lars I, Paul F, Ginuseppe V (2017) The link between type 2 diabetes and neurodegeneration: roles for amyloid-β, amylin and Tau protein. J Alzheimer’s Dis 59:421–432

    Article  Google Scholar 

  2. Pascal K, Sarah LG, Michael RS, Duilio C, Jose AR, Dan S, Stephan P, Kevin M, Lorena S, Ji L, Paul S, Charles GG, Lin J, Tamir G, David SE (2018) Common fibrillary spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J Biol Chem 293:2888–2902

    Article  Google Scholar 

  3. Barbagallo M, Dominguez L (2014) Type 2 diabetes mellitus and Alzheimer’s diseases. World J Diabetes 5:889–893

    Article  Google Scholar 

  4. Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM (2014) Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 5:161

    Article  Google Scholar 

  5. Takeda S, Sato N, Rakugi H, Morishita R (2011) Molecular mechanisms linking diabetes mellitus and Alzheimer’s disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst 7:1822–1827

    Article  CAS  Google Scholar 

  6. Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503

    Article  CAS  Google Scholar 

  7. Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 84:8628–8632

    Article  CAS  Google Scholar 

  8. Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer’s disease. Diabetes 53:474–481

    Article  CAS  Google Scholar 

  9. Toyama BH, Weissman JS (2011) Amyloid structure: conformational diversity and consequences. Ann Rev Biochem 80:557

    Article  CAS  Google Scholar 

  10. Miyamae Y, Kurisu M, Murakami K, Han J, Isoda H, Irie K, Shigemori H (2012) Protective effects of caffeoylquinic acids on the aggregation and neurotoxicity of the 42-residue amyloid β-protein. Bioorg Med Chem 19:5844–5849

    Article  Google Scholar 

  11. Kurisu M, Miyamae Y, Murakami K, Han J, Isoda H, Irie K, Shigemori H (2013) Inhibition of amyloid β aggregation by acteoside, a phenylethanoid glycoside. Biosci Biotechnol Biochem 77:1329–1332

    Article  CAS  Google Scholar 

  12. Hmidene AB, Hanaki M, Murakami K, Irie K, Isoda H, Shigemori H (2017) Inhibitory activities of antioxidant flavonoids from Tamarix gallica on amyloid aggregation related to Alzheimer’s and type 2 diabetes diseases. Biol Pharm Bull 40:238–241

    Article  Google Scholar 

  13. Jiang G, Takase M, Aihara Y, Shigemori H (2019) Inhibitory activities of kukoamines A and B from Lycii Cortex on amyloid aggregation related to Alzheimer’s disease and type 2 diabetes. J Nat Med 74:247–251

    Article  Google Scholar 

  14. Sun J, Jiang G, Shigemori H (2019) Inhibitory activity on amyloid aggregation of rosmarinic acid and its substructures from Isodon japonicas. Nat Prod Commun. https://doi.org/10.1177/1934578X19843039

    Article  Google Scholar 

  15. Klaudija C, Marko P, Martina G, Zlatko S (2016) Medicinal plants of the family Lamiaceae as functional foods-a review. Czech J Food Sci 34:377–390

    Article  Google Scholar 

  16. Takahashi Y, Nagumo S, Noguchi M, Nagai M (1999) Phenolic constituents of Lycopus lucidus. Hoshi Univ Nat Med 53:273–277

    CAS  Google Scholar 

  17. Mitsuhashi H, Okada M, Nunome S, Terabayashi S, Miki E, Fujita T, Yamauchi T, Itokawa H (1988) Illustrated medicinal plants of the world in color. Hokuryukan Co., Ltd., Tokyo, pp 450–454

    Google Scholar 

  18. Shin TY, Kim SH, Suk K, Ha JH, Kim I, Lee MG, Jun CD, Kim SY, Lim JP, Eun JS, Shin HY, Kim HM (2005) Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model. Toxicol Appl Pharmacol 209:255–262

    Article  CAS  Google Scholar 

  19. Lee WS, Im KR, Park YD, Sung ND, Jeong TS (2006) Human ACAT-1 and ACAT-2 inhibitory activities of pentacyclic triterpenes from the leaves of Lycopus lucidus TURCZ. Biol Pharm Bull 29:382–384

    Article  CAS  Google Scholar 

  20. Lee YJ, Kang DG, Kim JS, Lee HS (2008) Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vasc Pharmacol 48:38–46

    Article  CAS  Google Scholar 

  21. Gazit E (2002) A possible role for π–π stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  Google Scholar 

  22. Sato M, Murakami K, Uno M, Nakagawa Y, Katayama S, Akagi K, Masuda Y, Takegoshi K, Irie K (2013) Site-specific inhibitory mechanism for amyloid Aβ42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem 288:23212–23224

    Article  CAS  Google Scholar 

  23. Nunomura A, Moreira PI, Castellani RJ, Lee H, Zhu X, Smith MA, Perry G (2012) Oxidative damage to RNA in aging and neurodegenerative disorders. Neurotox Res 22:231–248

    Article  CAS  Google Scholar 

  24. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circul Res 107:1058–1070

    Article  CAS  Google Scholar 

  25. Murata T, Watahiki M, Tanaka Y, Miyase T, Yoshizaki F (2010) Hyaluronidase inhibitors from Takuran, Lycopus lucidus. Chem Pharm Bull 58:394–397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Kazuhiro Irie, Associate Professor Kazuma Murakami, and Dr Mizuho Hanaki, Graduate School of Agriculture, Kyoto University for preparing Aβ42. We would like to thank Editage (www.editage.com) for English language editing. This work was partially supported by JSPS KAKENHI Grant Number JP24580156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Shigemori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Murata, T. & Shigemori, H. Inhibitory activities of phenylpropanoids from Lycopus lucidus on amyloid aggregation related to Alzheimer’s disease and type 2 diabetes. J Nat Med 74, 579–583 (2020). https://doi.org/10.1007/s11418-020-01398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01398-6

Keywords

Navigation