Skip to main content
Log in

Arctigenin suppresses cell proliferation via autophagy inhibition in hepatocellular carcinoma cells

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Autophagy is a catabolic process that degrades dysfunctional proteins and organelles and plays critical roles in cancer development. Our preliminary screening identified that extracts of the fruits of Arctium lappa and the fruits of Forsythia suspensa notably suppressed the proliferation of hepatocellular carcinoma HepG2 cells and downregulated the autophagy. In this study, we explored the effect of arctigenin (ARG), a bioactive lignan in both extracts, on cell proliferation and autophagy-related proteins in HepG2 cells. ARG inhibited the proliferation of HepG2 cells. Analysis of autophagy-related proteins demonstrated that ARG might block the autophagy that leads to sequestosome 1/p62 (p62) accumulation. The stage of inhibition in autophagy by ARG differed from those by the autophagy inhibitors 3-methyladenine (3-MA) or chloroquine (CQ). ARG could also inhibit starvation-induced autophagy. Further analysis of apoptosis-related proteins indicated that ARG did not affect caspase-3 activation and PARP cleavage, suggesting that the antiproliferative effect of ARG can occur independently of apoptosis. In summary, our study showed that ARG suppresses cell proliferation and inhibits autophagy, and might lead to the development of agents for autophagy research and cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

ARC:

Arctiin

ARG:

Arctigenin

CQ:

Chloroquine

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle medium

DMSO:

Dimethyl sulfoxide

ETP:

Etoposide

FBS:

Fetal bovine serum

HCC:

Hepatocellular cancer

LC3:

Light chain 3

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide

p62:

Sequestosome 1/p62

PBS:

Phosphate-buffered saline

References

  1. Gravitz L (2014) Liver cancer. Nature 516:S1

    Article  CAS  PubMed  Google Scholar 

  2. Vogel A, Saborowski A (2019) Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma. Cancer Treat Rev 82:101946

    Article  PubMed  CAS  Google Scholar 

  3. Bruix J, Han KH, Gores G, Llovet JM, Mazzaferro V (2015) Liver cancer: approaching a personalized care. J Hepatol 62:S144–156

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wege H, Li J, Ittrich H (2019) Treatment lines in hepatocellular carcinoma. Visc Med 35:266–272

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi AMK, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  7. Lassen KG, Xavier RJ (2018) Mechanisms and function of autophagy in intestinal disease. Autophagy 14:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ueno T, Komatsu M (2017) Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol 14:170–184

    Article  CAS  PubMed  Google Scholar 

  9. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  CAS  PubMed  Google Scholar 

  11. Geetha T, Wooten MW (2002) Structure and functional properties of the ubiquitin binding protein p62. FEBS Lett 512:19–24

    Article  CAS  PubMed  Google Scholar 

  12. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  15. Itakura E, Mizushima N (2011) p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang W, Liu L, Zhou Y, Ye Q, Yang X, Jiang J, Ye Z, Gao F, Tan X, Zhang G, Fang Q, Xuan ZX (2019) Hydroxychloroquine enhances the antitumor effects of BC001 in gastric cancer. Int J Oncol 55:405–414

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Young AN, Herrera D, Huntsman AC, Korkmaz MA, Lantvit DD, Mazumder S, Kolli S, Coss CC, King S, Wang H, Swanson SM, Kinghorn AD, Zhang X, Phelps MA, Aldrich LN, Fuchs JR, Burdetteet JE (2018) Phyllanthusmin derivatives induce apoptosis and reduce tumor burden in high-grade serous ovarian cancer by late-stage autophagy inhibition. Mol Cancer Ther 17:2123–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okubo S, Komori H, Kuwahara A, Ohta T, Shoyama Y, Uto T (2019) Screening of crude drugs used in Japanese Kampo formulas for autophagy-mediated cell survival of the human hepatocellular carcinoma cell line. Medicines 6:63

    Article  CAS  PubMed Central  Google Scholar 

  22. Erdemoglu N, Turan NN, Akkol EK, Sener B, Abacioglu N (2009) Estimation of anti-inflammatory, antinociceptive and antioxidant activities of Arctium minus (Hill) Bernh. ssp. minus. J Ethnopharmacol 121:318–323

    Article  PubMed  Google Scholar 

  23. Gentil M, Pereira JV, Silva-Sousa YT, Pietro R, Sousa-Neto MD, Vansan LP, França SC (2006) In vitro evaluation of the antibacterial activity of Arctium lappa as a phytotherapeutic agent used in intracanal dressings. Phytother Res 20:184–186

    Article  PubMed  Google Scholar 

  24. Dias MM, Zuza O, Riani LR, Pinto PF, Silva Pinto PL, Silva MP, Moraes J, Ataíde AC, Silva FO, Cecílio AB, da Silva Filho AA (2017) In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed Pharmacother 94:489–498

    Article  CAS  PubMed  Google Scholar 

  25. Predes FS, Diamante MAS, Foglio MA, Camargo CA, Aoyama H, Miranda SC, Cruz B, Gomes-Marcondes MCC, Dolder H (2014) Hepatoprotective effect of Arctium lappa root extract on cadmium toxicity in adult wistar rats. Biol Trace Elem Res 160:250–257

    Article  CAS  Google Scholar 

  26. Matsumoto T, Hosono-Nishiyama K, Yamada H (2006) Antiproliferative and apoptotic effects of butyrolactone lignans from Arctium lappa on leukemic cells. Planta Med 72:276–278

    Article  CAS  PubMed  Google Scholar 

  27. Knott A, Reuschlein K, Mielke H, Wensorra U, Mummert C, Koop U, Kausch M, Kolbe L, Peters N, Stäb F, Wenck H, Gallinat S (2008) Natural Arctium lappa fruit extract improves the clinical signs of aging skin. J Cosmet Dermatol 7:281–289

    Article  PubMed  Google Scholar 

  28. Bao J, Ding R, Zou L, Zhang C, Wang K, Liu F, Li P, Chen M, Wan JB, Su H, Wang Y, He C (2016) Forsythiae Fructus inhibits B16 melanoma growth involving MAPKs/Nrf2/HO-1 mediated anti-oxidation and anti-inflammation. Am J Chin Med 44:1043–1061

    Article  CAS  PubMed  Google Scholar 

  29. Jia J, Zhang F, Li Z, Qin X, Zhang L (2015) Comparison of fruits of Forsythia suspensa at two different maturation stages by NMR-based metabolomics. Molecules 20:10065–10081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Miao H, Yan H, Sheng Y, Ji L (2018) Hepatoprotective effect of Forsythiae fructus water extract against carbon tetrachloride-induced liver fibrosis in mice. J Ethnopharmacol 218:27–34

    Article  CAS  PubMed  Google Scholar 

  31. Sung YY, Yoon T, Jang S, Kim HK (2016) Forsythia suspensa suppresses house dust mite extract-induced atopic dermatitis in NC/Nga mice. PLoS ONE 11:e0167687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hata N, Kobayashi A, Muranaka T, Okazawa A (2011) Multifunctionality and use of plants containing high concentrations of arctiin/arctigenin. Agric Hortic 86:10–20

    CAS  Google Scholar 

  33. Kang HS, Lee JY, Kim CJ (2008) Anti-inflammatory activity of arctigenin from Forsythiae fructus. J Ethnopharmacol 116:305–312

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Li W, Jin E, He Q, Yan W, Yang H, Gong S, Guo Y, Fu S, Chen X, Ye S, Qian Y (2016) The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2. Res Vet Sci 106:159–164

    Article  CAS  PubMed  Google Scholar 

  35. Wu RM, Sun YY, Zhou TT, Zhu ZY, Zhuang JJ, Tang X, Chen J, Hu L, Shen X (2014) Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol Sin 35:1274–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu Z, Yan J, Jiang W, Yao X, Chen J, Chen L, Li C, Hu L, Jiang H, Shen X (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance. Neurosci 33:13138–13149

    Article  CAS  Google Scholar 

  37. He Y, Fan Q, Cai T, Huang W, Xie X, Wen Y, Shi Z (2018) Molecular mechanisms of the action of arctigenin in cancer. Biomed Pharmacother 108:403–407

    Article  CAS  PubMed  Google Scholar 

  38. Maxwell T, Lee KS, Kim S, Nam KS (2018) Arctigenin inhibits the activation of the mTOR pathway, resulting in autophagic cell death and decreased ER expression in ER-positive human breast cancer cells. Int J Oncol 52:1339–1349

    CAS  PubMed  Google Scholar 

  39. Feng Q, Yao J, Zhou G, Xia W, Lyu G, Li X, Zhao T, Zhang G, Zhao N, Yang J (2018) Quantitative proteomic analysis reveals that arctigenin alleviates concanavalin A-induced hepatitis through suppressing immune system and regulating autophagy. Front Immunol 9:1881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang Y, Lina L, Xu L, Yang Z, Qian Z, Zhou J, Suoni L (2019) Arctigenin enhances the sensitivity of cisplatin resistant colorectal cancer cell by activating autophagy. Biochem Biophys Res Commun 520:20–26

    Article  CAS  PubMed  Google Scholar 

  41. Uto T, Morinaga O, Tanaka H, Shoyama Y (2012) Analysis of the synergistic effect of glycyrrhizin and other constituents in licorice extract on lipopolysaccharide-induced nitric oxide production using knock-out extract. Biochem Biophys Res Commun 417:473–478

    Article  CAS  PubMed  Google Scholar 

  42. Sermeus A, Cosse JP, Crespin M, Mainfroid V, Longueville F, Ninane M, Raes J, Remacle CM (2008) Hypoxia induces protection against etoposide-induced apoptosis: molecular profiling of changes in gene expression and transcription factor activity. Mol Cancer 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Xie BS, Zhao HC, Yao SK, Zhuo DX, Jin B, Lv DC, Wu CL, Ma DL, Gao C, Shu XM, Ai ZL (2011) Autophagy inhibition enhances etoposide-induced cell death in human hepatoma G2 cells. Int J Mol Med 27:599–606

    CAS  PubMed  Google Scholar 

  44. Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan KL (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mayurbhai HS, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10:431–441

    Article  CAS  Google Scholar 

  46. Okubo S, Uto T, Goto A, Tanaka H, Nishioku T, Yamada K, Shoyama Y (2017) Berberine induces apoptotic cell death via activation of caspase-3 and -8 in HL-60 human leukemia cells: nuclear localization and structure-activity relationships. Am J Chin Med 45:1497–1511

    Article  CAS  PubMed  Google Scholar 

  47. D'Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  PubMed  Google Scholar 

  48. Uto T, Tung NH, Ohta T, Juengsanguanpornsuk W, Hung LQ, Hai NT, Long DD, Thuong PT, Okubo S, Hirata S, Shoyama Y (2018) Antiproliferative activity and apoptosis induction by trijuganone C isolated from the root of Salvia miltiorrhiza Bunge (Danshen). Phytother Res 32:657–666

    Article  CAS  PubMed  Google Scholar 

  49. Huang YH, Sun Y, Huang FY, Li YN, Wang CC, Mei WL, Dai HF, Tan GH, Huang C (2017) Toxicarioside O induces protective autophagy in a sirtuin-1-dependent manner in colorectal cancer cells. Oncotarget 8:52783–52791

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang J, Qi Q, Feng Z, Zhang X, Huang B, Chen A, Prestegarden L, Li X, Wang J (2016) Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget 7:66944–66958

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu R, Zhang ZQ, Wang B, Jiang HX, Cheng L, Shen LM (2014) Berberine-induced apoptotic and autophagic death of HepG2 cells requires AMPK activation. Cancer Cell Int 14:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tao R, Sun WY, Yu DH, Qiu W, Yan WQ, Ding YH, Wang GY, Li HJ (2017) Sodium cantharidinate induces HepG2 cell apoptosis through LC3 autophagy pathway. Oncol Rep 38:1233–1239

    Article  CAS  PubMed  Google Scholar 

  53. Yan W, Yang J, Tang H, Xue L, Chen K, Wang L, Zhao M, Tang M, Peng A, Long C, Chen X, Ye H, Chen L (2019) Flavonoids from the stems of Millettia pachyloba Drake mediate cytotoxic activity through apoptosis and autophagy in cancer cells. J Adv Res 20:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Sasakawa Scientific Research Grant from the Japan Science Society (Grant no. 2018-4039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuhiro Uto.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okubo, S., Ohta, T., Shoyama, Y. et al. Arctigenin suppresses cell proliferation via autophagy inhibition in hepatocellular carcinoma cells. J Nat Med 74, 525–532 (2020). https://doi.org/10.1007/s11418-020-01396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01396-8

Keywords

Navigation