Skip to main content

Advertisement

Log in

Allometry, Function and Shape Diversification in the Inner Ear of Platyrrhine Primates

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The diversification of anatomical structures with functional importance during the branching process of a clade is a widely studied phenomenon in evolutionary biology. In recent years, there is a growing interest in the study of the inner ear, a structure associated with hearing, locomotion, and indirectly, with body size. These studies have been particularly important in primates. The platyrrhine radiation is an ideal system in which to study inner ear diversification because it is one of the major groups of living primates and an example of an adaptive radiation related to body size and ecological characteristics. In this work, we used micro-tomography, 3D geometric morphometrics, and phylogenetic comparative methods to explore the pattern of shape variation in the inner ear of platyrrhines and to assess whether this variation is related to size, locomotion, and vocalization. Our main results suggest that (1) diversification of inner ear morphology was achieved early in the radiation, particularly for the shape of the semicircular canals and the relative size of the cochlea; (2) inner ear shape diversification is generally not associated with changes in vocalization features or locomotion behaviors; and (3) conversely, body size is a strong predictor of inner ear shape. This last result contrasts with recent studies indicating that allometry has weak effects on platyrrhine cranial diversification and suggests complex factors driving inner ear diversification in the clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The morphometric data and chrono-phylogenetic tree for the species are available in electronic supplementary material, Datafiles S1 and S2. No human skulls were used in this work.

References

  • Adams DC (2014) A generalized K statistic for estimating phylogenetic signal from shape and other high–dimensional multivariate data. Syst Biol 63:685–697

    Article  Google Scholar 

  • Aristide L, Rosenberger AL, Tejedor MF, Perez SI (2015a) Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation. Mol Phylogenet Evol 82:375–385

    Article  Google Scholar 

  • Aristide L, dos Reis SF, Machado AC, Lima I, Lopes RT, Perez SI (2015b) Encephalization and diversification of the cranial base in platyrrhine primates. J Hum Evol 81:29–40

    Article  Google Scholar 

  • Aristide L, dos Reis SF, Machado AC, Lima I, Lopes RT, Perez SI (2016) Brain shape convergence in the adaptive radiation of New World monkeys. Proc Natl Acad Sci USA 113:2158–2163

    Article  CAS  Google Scholar 

  • Aristide L, Bastide P, dos Reis, SF., dos Santos TMP, Lopes RT, Perez PI (2018) Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution 72-12: 2697–2711

    Article  Google Scholar 

  • Barbosa Caselli C, Romano V, Ruiz-Miranda C, da Cunha R (2018) Las voces de los primates neotropicales: ¿qué dicen? In: Urbani B, Kowalewski M, Teixeira da Cunha RG, de la Torre S, Cortés-Ortiz L (eds) La Primatología en Latinoamérica 2. Ediciones IVIC, Caracas, pp 267–281

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

  • Bookstein FL (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243

    Article  CAS  Google Scholar 

  • Bowling DL, Garcia M, Dunn JC, Ruprecht A, Stewart K, Frommolt KH, Fitch WT (2017) Body size and vocalization in primates and carnivores. Sci Rep 7:41070

    Article  CAS  Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat 164:683–695

    Article  Google Scholar 

  • Cardini A, Elton S (2007) Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology 126:121–134

    Article  Google Scholar 

  • Darwin C (1859) On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life. John Murray, London

    Book  Google Scholar 

  • Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228:324–337

    Article  Google Scholar 

  • Fleagle JG (2013) Primate Adaptation and Evolution, 3rd ed. Academic Press, San Diego

    Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    Article  CAS  Google Scholar 

  • Groves C (2005) Order Primates. In: Wilson DE, Reader DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, pp 111–184

    Google Scholar 

  • Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24:103–109

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern Morphometrics in Physical Anthropology. Springer, New York, pp 73–98

  • Harmon LJ, Schulte JA, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961–964

    Article  CAS  Google Scholar 

  • IUCN (2018) The IUCN red list of threatened species. Version 2018-2. (www.iucnredlist.org)

  • Kirk EC, Gosselin-Ildari AD (2009) Cochlear labyrinth volume and hearing abilities in primates. Anat Rec 292:765–776

    Article  Google Scholar 

  • Lebrun R, De Leon MP, Tafforeau P, Zollikofer C (2010) Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216:368–380

    Article  Google Scholar 

  • Losos JB, Mahler DL (2010) Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. In: Bell MA, Futuyama DJ, Eanes WF, Levinton JS (eds) Evolution Since Darwin: The First 150 Years. Sinauer, Sunderland, pp 381–420

  • Manley GA, Kraus JE (2010) Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J Exp Biol 213:1876–1885

    Article  Google Scholar 

  • Manly BFJ (1986) Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res Popul Ecol 28:201–218

    Article  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 14:646–667

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    Article  CAS  Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O'Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genetics 7(3):e1001342

    Article  CAS  Google Scholar 

  • Perez SI, Bernal V, Gonzalez P (2006) Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J Anat 208:769–784

    Article  Google Scholar 

  • Perez SI, Klaczko J, Rocatti G, dos Reis SF (2011) Patterns of cranial shape diversification during the phylogenetic branching process of New World monkeys (Primates: Platyrrhini). J Evol Biol 24:1826–1835

    Article  CAS  Google Scholar 

  • Perez SI, Rosenberger AL (2014) The status of platyrrhine phylogeny: a meta-analysis and quantitative appraisal of topological hypotheses. J Hum Evol 76:177–187

  • Perez SI, Tejedor MF, Novo NM, Arístide L (2013) Divergence times and the evolutionary radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. PLoS ONE 8(6):e68029

    Article  CAS  Google Scholar 

  • Polly PD (2003) Paleophylogeography: the tempo of geographic differentiation in marmots (Marmota). J Mammal 84:369–384

    Article  Google Scholar 

  • R Development Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. (www.R-project.org)

    Google Scholar 

  • Radinsky LB (1987) The Evolution of Vertebrate Design. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Rae TC, Johnson PM, Yano W, Hirasaki E (2016) Semicircular canal size and locomotion in colobine monkeys: a cautionary tale. Folia Primatol 87(4):213–223

    Article  Google Scholar 

  • Ramsier MA, Cunningham AJ, Moritz GL, Finneran JJ, Williams CV, Ong PS, Gursky-Doyen SL, Dominy NJ (2012) Primate communication in the pure ultrasound. Biol Lett 8(4):508–511

    Article  Google Scholar 

  • Ritsche IS, Fahlke JM, Wieder F, Hilger A, Manke I, Hampe O (2018) Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti. Foss Rec 21:33–45

    Article  Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39(1):40–59

    Google Scholar 

  • Rosenberger AL (1992) Evolution of feeding niches in New World monkeys. Am J Phys Anthropol 88:525–562

    Article  CAS  Google Scholar 

  • Rosenberger AL, Tejedor MF, Cooke SB, Pekar S (2009) Platyrrhine ecophylogenetics in space and time. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds) South American Primates. Springer, New York, pp 69–113

    Chapter  Google Scholar 

  • Simpson GG (1944) Tempo and Mode in Evolution. Columbia University Press, New York

    Google Scholar 

  • Spoor F, Garland T Jr, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104:10808–10812

    Article  CAS  Google Scholar 

  • van der Klaauw CJ (1948) Ecological studies and reviews. IV. Ecological morphology. Bibl Biotheor 4:27–111

  • Wiley DF, Amenta N, Alcantara DA, Ghosh D, Kil YJ (2005) Evolutionary morphing. Proc IEEE Visualization 2005 (VIS’05):431-438

    Google Scholar 

  • Youlatos D, Meldrum J (2011) Locomotor diversification in New World monkeys: running, climbing, or clawing along evolutionary branches. Anat Rec 294:1991–2012

  • Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G, (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116-1128

Download references

Acknowledgements

We thank J. A. de Oliveira (Museu Nacional, Rio de Janeiro, Brazil) and M. de Vivo (Museu de Zoologia, Universidade de Sao Paulo, Brazil) for granting us access to the platyrrhine skeletal collections under their care. We also thank to G. Cassini, N. Toledo, and S. Vizcaíno for inviting us to participate in this tribute to L.B. Radinsky within the framework of the Symposium: “El paradigma de correlación forma función en mastozoología: un tributo a Leonard Radinsky (1937–1985),” which took place during the XXXI Jornadas Argentinas de Mastozoología, in La Rioja, Argentina, October 25, 2018. Finally, we thank two anonymous reviewers for the comments that improved the quality of this paper. This research was supported by Grants from the FONCyT (grant number PICT-2014-1810), CONICET (grant number PIP-2014-0603), Conselho Nacional de Desenvolvimento Científico e Tecnológico, and Fundação de Amparo à Pesquisa do Estado de São Paulo.

Author information

Authors and Affiliations

Authors

Contributions

S.I.P., L.A. and S.F.d.R. conceived the study. J.d.R., T.M.P.d.S and R.T.L. collected image and morphometric data. J.d.R., L.A. and S.I.P. analysed morphometric data. J.d.R., L.A., S.F.d.R. and S.I.P. interpreted the data and wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to S. Ivan Perez.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PNG 517 kb)

High Resolution Image (TIF 3488 kb)

Supplementary datafile 1. Morphometric and ecological data used in this work. (XLS 56 kb)

10914_2019_9490_MOESM3_ESM.nwk

Supplementary datafile 2. Chrono-phylogenetic tree used in this work (Aristide et al. (2015a). (NWK 912 bytes)

Table S1

(DOC 44 kb)

Table S2

(DOC 31 kb)

Table S3

(DOC 46 kb)

Table S4

(DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Rio, J., Aristide, L., dos Reis, S.F. et al. Allometry, Function and Shape Diversification in the Inner Ear of Platyrrhine Primates. J Mammal Evol 28, 135–143 (2021). https://doi.org/10.1007/s10914-019-09490-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09490-9

Keywords

Navigation