Skip to main content
Log in

Phylogeography of the Volcano Rabbit (Romerolagus diazi): the Evolutionary History of a Mountain Specialist Molded by the Climatic-Volcanism Interaction in the Central Mexican Highlands

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Processes such as climate fluctuations together with recent volcanism have driven the diversification and local persistence of biodiversity within the Mexican highlands. We reconstruct the phylogeographic pattern and historical demography of the volcano rabbit, Romerolagus diazi, an endemic lagomorph in central Mexico, to elucidate the effect of the climate-volcanism interaction on its evolutionary history. We sequenced two mtDNA regions for 152 individuals from 45 sample sites located at the volcanic fields Sierra Chichinautzin and Sierra Nevada. We surveyed the genetic diversity, and reconstructed and dated an intraspecific phylogeny. The effective population size trough time was estimated, and an Ecological Niche Model was projected onto the past. Results showed a well-supported phylogeny with five monophyletic lineages with a north to south geographic pattern at Sierra Nevada, and east to west at Sierra Chichinautzin. Dating estimates indicated that those lineages might have started their diversification ca. 1.4 Ma, which agrees with the geological dating reported for the volcanic fields rising. We detected changes in demographic history and potential distribution, with a global population expansion during the Last Glacial Maximum and a retraction during the Last Interglacial period. The molecular evidence showed that the volcano rabbit had a dynamic evolutionary history molded by geological and climatic events during the Pleistocene. The volcanic events that shaped Sierra Chichinautzin and Sierra Nevada generated regions that allowed the colonization, isolation and posterior in-situ diversification of their populations. Additionally, the climatic fluctuations of the latest glacial-interglacial cycles promoted altitudinal populations shifts, with a sky-island dynamic that allowed their persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arce JL, Layer PW, Lassiter JC, Benowitz JA, Macías JL, Ramírez-Espinosa J (2013) 40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south Mexico City: implications for timing, eruption rate, and distribution of volcanism. Bull Volcanol 75:774–798

    Article  Google Scholar 

  • Arregoitia LV, Leach K, Reid N, Fisher DO (2015) Diversity, extinction, and threat status in lagomorphs. Ecography 38:1115–1165

    Google Scholar 

  • Bryson RW, Murphy RW, Graham MR, Lathrop A, Lazcano D (2011) Ephemeral Pleistocene woodlands connect the dots for highland rattlesnakes of the Crotalus intermedius group. J Biogeogr 38:2299–2310

    Article  Google Scholar 

  • Cadoux A, Missenard YM, Martinez-serrano RG, Guillou H (2011) Trenchward Plio-quaternary volcanism migration in the trans-Mexican Volcanic Belt: the case of the Sierra Nevada range. Geol Mag 148:492–506

    Article  CAS  Google Scholar 

  • Cervantes FA (1982) Observaciones sobre la reproducción del zacatuche o teporingo Romerolagus diazi (mammalia: Lagomorpha). Doña Acta Vertebrata 9:416–420

    Google Scholar 

  • Cervantes FA, Consuelo L, Hoffman RS (1990) Romerolagus diazi. Mammal Species 360:1–7

    Article  Google Scholar 

  • Cervantes FA, Lorenzo C, Yate TL (2002) Genetic variation in populations of Mexican lagomorphs. J Mammal 83(4):1077–1086

    Article  Google Scholar 

  • Ci HX, Lin GH, Cai ZY, Tang LZ, Su JP, Liu JQ (2009) Population history of the plateau pika endemic to the Qinghai-Tibetan plateau based on mtDNA sequence data. J Zool 279:396–403

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogist. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Muñoz V (2006) Micromamíferos del Pleistoceno tardío de Velsequillo, Puebla, México. Dissertation, Universidad Nacional Autónoma de México

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes-Zumpf WA, Rachlow JL, Waits LP, Warheit KI (2010) Dispersal, gene flow, and population genetic in the pygmy rabbit (Brachylagus idahoensis). J Mammal 91:208–219

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (versión 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the trans-Mexican Volcanic Belt and the Mexico subduction zone. Tecnophysics 522-523:122–149

    Article  Google Scholar 

  • Ferrusquía-Villafranca I (1993) Geology of Mexico: a synopsis. In: Ramamoorthy TP, Bye R, Lot A (eds) Biological Diversity of Mexico: Origins and Distribution. Instituto de Biología, México City, pp 3–107

    Google Scholar 

  • Fickel J, Schmidt A, Putze M, Spittler H, Ludwing H, Streich WJ, Pitra C (2005) Genetic structure of populations of European brown hare: implications for management. J Wildl Manag 69:760–770

    Article  Google Scholar 

  • Fjeldsa J, Bowie RCK (2008) New perspectives on the origin and diversification of Africa’s forest avifauna. Afr J Ecol 46:235–247

    Article  Google Scholar 

  • Fjeldsa J, Bowie RCK, Rahbek C (2012) The role of mountain ranges in the diversification of birds. Annu Rev Ecol Evol Syst 43:249–265

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • Fu XY (1997) Statistical test of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evolution 63-11:2848–2863

    Article  CAS  Google Scholar 

  • Halffter G (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annu Rev Entomol 32:95–114

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905–920

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis AJ (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Khalilipour O, Rezaie HR, Shabani AA, Kaboli M, Ashrafi S (2014) Genetic structure and differentiation of four populations of afghan Pika (Ochotona rufescens) in Iran based on mitochondrial cytochrome b gene. Zool Middle East 60:288–298

    Article  Google Scholar 

  • Knowles LL (2000) Test of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54(4):1337–1348

    Article  CAS  PubMed  Google Scholar 

  • Kryger U, Robinson TJ, Bloomer O (2004) Population structure and history of southern African scrub hares, Lepus saxatalis. J Zool 263:121–133

    Article  Google Scholar 

  • Lanier HC, Olson LE (2013) Deep barriers, shallow divergences: Reduced phylogenetical structure in the collared pika (Mammalia: Lagomorpha: Ochotona collaris). J Biogeogr 40:466–478

    Article  Google Scholar 

  • Lin G, Ci H, Thirgood SJ, Zhang T, Su J (2010) Genetic variation and molecular evolution of endangered Kozlov’s pika (Ochotona koslowi Büchner) based on mitochondrial cytochrome B gene. Pol J Ecol 58:563–568

    CAS  Google Scholar 

  • Maddison WP, Maddison DR (2015) Mesquite: a molecular system for evolutionary analysis. Version 3.51 http://mesquiteproject.org.

  • Márquez A, Verma SP, Anguita F, Oyarzun R, Brandle JL (1999) Tectonics and volcanism of sierra Chichinautzin: extension at the front of the central trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 93:125–150

    Article  Google Scholar 

  • Mastretta-Yanes A, Moreno-Letelier A, Piéro D Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600

    Article  Google Scholar 

  • Mateos M, Sanjur OI, Vrijenhoek RC (2002) Historical biogeography of the livebearing fish genus Poeciliopsis (Poecilidae: Cyprinodontiformes). Evolution 56:972–984

    Article  PubMed  Google Scholar 

  • Mathis VL, Hafner MS, Hafner DJ (2014) Evolution and phylogeography of the Thomomys umbrinus species complex (Rodentia: Geomyidae). J Mammal 95:754–771

    Article  Google Scholar 

  • Matthee CA, Jansen VV, Bell D, Robinson TJ (2004) A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53:433–447

    Article  PubMed  Google Scholar 

  • Mougle F (1997) Variation de trois types de marqueurs génétiques dans l’ evolution de l’ espèce Oryctolagus cuniculus: aspects moléculaires et relations avec la biologie et la structure des populations. Dissertation, Université de Paris Sud

    Google Scholar 

  • Nabholz B, Mauffrey JF, Bazin E, Galtier N, Gleim S (2008) Determination of mitochondrial genetic diversity in mammals. Genetics 178:351–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochoa A, Gasca J, Ceballos GJ, Eguiarte LE (2012) Spatiotemporal population genetics of the endangered Perote ground squirrel (Xerospermophilus perotensis) in a fragmented landscape. J Mammal 92:1061–1074

    Article  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating artic climate warmth and icefield retreat in the last interglaciation. Science 311(5768):1751–1753

    Article  CAS  PubMed  Google Scholar 

  • Parra-Olea G, Winfield JC, Velo-Antón G, Zamudio KR (2012) Isolation in habitat refugia promotes rapid diversification in a montane tropical salamander. J Biogeogr 39:353–370

    Article  Google Scholar 

  • Philips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distribution. Ecol Model 190:231–259

    Article  Google Scholar 

  • Piaggio AJ, Spicer GS (2001) Molecular phylogeny of the chipmunks inferred from mitochondrial cytochrome b and cytochrome oxidase II gene sequences. Mol Phylogenet Evol 20(3):335–350

    Article  CAS  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy T, Bye R, Lot A, Fa J (1993) Biological Diversity of Mexico: Origins and Distribution. Oxford University Press, Oxford

    Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 67(5):901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez SJP (2009) Diversidad genética entre las poblaciones del conejo zacatuche (Romerolagus diazi). Dissertation, Universidad Nacional Autónoma de México.

    Google Scholar 

  • Rico Y, Lorenzo C, González-Cózatl FX, Espinoza E (2008) Phylogeography and population structure of the endangered Tehuantepec jackrabbit Lepus flavigularis: implications for conservation. Conserv Genet 9:1467–1477

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larger B, Liu L, Suchard MA, Huelsenbeck JP (2011) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analyses of large datasets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Limusa, Ciudad de México

    Google Scholar 

  • Sandel B, Arge L, Dalsgaard B, Davies RR, Gaston KJ, Sutherland WJ, Svenning JC (2011) The influence of late Quaternary climate-change velocity on species endemism. Science 334:660–664

    Article  CAS  PubMed  Google Scholar 

  • SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental - especies nativas de flora y fauna silvestres, categorías de riesgo y especificaciones para su inclusión, exclusión o cambio – Lista de especies en riesgo. Diario Oficial de la Federación 30 de Diciembre del 2010, segunda sección. Ciudad de México

  • Solomón SVM, Contreras MJL, Matzumura DP, Vásquez PCG (2005) Estimación de la variabilidad genética en el Teporingo (Romerolagus diazi) en cautiverio. Veterinaria México 36:002

    Google Scholar 

  • Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4(1): vey016

  • Vázquez-Selem L, Heine K (2004) Late Quaternary glaciation of Mexico. In: Eglers J, Gibbars PL (eds) Quaternary Glaciations: Extent and Chronology, 3rd ed. Elsevier, Amsterdam, pp 233–242

    Google Scholar 

  • Velázquez A, Romero FJ, López-Paniagua J (1996) Ecología y conservación del conejo Zacatuche (Romerolagus diazi) y su hábitat. Fondo de Cultura Económica, México City

    Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozowa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2010) MIROC-ESM: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872

    Article  Google Scholar 

  • Wiens JJ, Parra-Olea G, García-París M, Wake DB (2007) Phylogenetic history explains elevational biodiversity pattern in tropical salamanders. Proc R Soc Lond B Biol Sci 274:919–928

    CAS  Google Scholar 

  • Yu F, Li S, Lilpatrick C, McGuire PM, He K, Wei W (2012) Biogeographical study of plateau pikas Ochotona curzoniae (Lagomorpha, Ochotonidae). Zool Sci 29:518–526

    Article  Google Scholar 

  • Zhong LJ, Zhang MW, Yao YF, Ni QY, Mu J, Li CQ, Xu HL (2013) Genetic diversity of two Tibetan macaque (Macaca tibetana) population from Guizhou ant Yunnan in China based on mitocondrial DNA D-loop sequences. Genes Genom 35:205–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Andrés Lira-Noriega and Enrique Martínez-Meyer for guiding the Ecological Niche Model inference. To Carolina Valdespino Quevedo and Consuelo Lorenzo Monterrubio for their valuable comments. To Consejo Nacional de Ciencia y Tecnología for its financial support with master’s degree scholarship to F.O.

Author information

Authors and Affiliations

Authors

Contributions

F.O., D.G and J.A.G. conceived the ideas; F.O. and J.A.G. collected the data; F.O., D.G.H. and A.E. analyzed the data; and F.O. led writing with assistance from D.G.H., J.A.G. and A.E.

Corresponding author

Correspondence to Felipe Osuna.

Ethics declarations

Competing Interests

The authors declare that they have no competing interest.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osuna, F., González, D., de los Monteros, A.E. et al. Phylogeography of the Volcano Rabbit (Romerolagus diazi): the Evolutionary History of a Mountain Specialist Molded by the Climatic-Volcanism Interaction in the Central Mexican Highlands. J Mammal Evol 27, 745–757 (2020). https://doi.org/10.1007/s10914-019-09493-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09493-6

Keywords

Navigation