Skip to main content
Log in

Influence of a Compatible Design on Physical Human-Robot Interaction Force: a Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In the kinematic design of wearable exoskeletons, the issue of axis misalignments between the human and the exoskeleton joints should be well dealt with. Otherwise, large physical human-robot interaction (p-HRI) forces may occur at the human-robot interfaces, which makes the p-HRI uncomfortable or even unsafe. To cope with this issue, a kinematically compatible design approach of wearable exoskeletons has been investigated by researchers, and great development has been made in recent years. Moreover, the influence of such a design on the exoskeleton’s p-HRI performance should be evaluated to determine if the design is feasible. In this paper, a self-adapting lower-limb exoskeleton mechanism for three degrees of freedom gait training is proposed, and the mechanical structure of the exoskeleton mechanism is designed in detail. Then, based on the presented exoskeleton mechanism and the use of suitable force/torque sensors, a p-HRI force measurement system is developed. Subsequently, the p-HRI forces of the human-robot closed chain under the static and motion modes are detected, and the influence of the self-adapting design on the lower-limb exoskeleton mechanism’s p-HRI force feature is evaluated. The results indicate that additional human-robot connective joints could reduce the p-HRI force significantly, the compatible design of the exoskeleton mechanism is effective, and is thus applied to human lower-limb gait training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hidler, J., Wisman, W., Neckel, N.: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin. Biomech. 23(10), 1251–1259 (2008)

    Article  Google Scholar 

  2. Zanotto, D., Stegall, P., Agrawal, S. K.: ALEX III: A novel robotic platform with 12 DOFs for human gait training. In: IEEE International Conference on Robotics and Automation. Proceedings, pp. 3914–3919. IEEE, Germany (2013)

  3. Veneman, J.F., Kruidhof, R., Hekman, E.E.G., Ekkelenkamp, R., Asseldonk, E.H.F.V., Kooij, H.V.D.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  4. Prange, G.B., Jannink, M.J.A., Groothuis-Oudshoorn, C.G.M., Hermens, H.J., Ijzerman, M.J.: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43(2), 171–183 (2006)

    Article  Google Scholar 

  5. Kwakkel, G., Kollen, B.J., Krebs, H.I.: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair. 22(2), 111–121 (2008)

    Article  Google Scholar 

  6. Gilliaux, M., Lejeune, T., Detrembleur, C., Sapin, J., Dehez, B., Selves, C., Stoquart, G.: A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: a preliminary prospective cohort study. J. Rehabil. Med. 44(3), 210–217 (2012)

    Article  Google Scholar 

  7. Schiele, A., Helm, F.C.T.V.D.: Kinematic design to improve ergonomics in human robot interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006)

    Article  Google Scholar 

  8. Schiele, A.: Ergonomics of exoskeletons objective performance metrics. In: world haptics-third joint Eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. pp. 103-108. IEEE, Salt Lake City (2009)

  9. Stienen, A.H.A., Hekman, E.E.G., Helm, F.C.T.V.D., Prange, G.B., Jannink, M.J.A., Aalsma, A.M.M., Kooij, H.V.D.: DAMPACE: dynamic force- coordination trainer for the upper extremities. In: IEEE 10th International Conference on Rehabilitation Robotics. Proceedings, pp. 820–826. IEEE, Noordwijk (2007)

  10. Nef, T., Guidali, M., Riener, R.: ARMinIII-arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)

    Article  Google Scholar 

  11. Celebi, B., Yalcin, M., Patoglu, V.: ASSISTON-KNEE: A self-aligning knee exoskeleton. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Proceedings, pp. 996–1002. Tokyo (2013)

  12. Vitiello, N., Lenzi, T., Roccella, S., Rossi, S.M.M.D., Cattin, E., Giovacchini, F., Vecchi, F., Carrozza, M.C.: NEUROExos: a powered elbow exoskeleton for physical rehabilitation. IEEE T. Robot. 29(1), 220–235 (2013)

    Article  Google Scholar 

  13. Wu, Q., Wang, X., Chen, B., Wu, H.: Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics. 53, 85–94 (2018)

    Article  Google Scholar 

  14. Lee, Y., Kim, Y., Lee, J., Lee, M., Choi, B., Kim, J., Park, Y., Choi, J.: Biomechanical design of a novel flexible exoskeleton for lower extremities. IEEE-ASME T. Mech. 1–1 (2017)

  15. Otten, A., Voort, C., Stienen, A., Aarts, R., Asseldonk, E., Kooij, H.: LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE-ASME T. Mech. 20(5), 1–14 (2015)

    Article  Google Scholar 

  16. Malosio, M., Pedrocchi, N., Vicentini, F., Tosatti, L.M.: Analysis of elbow-joints misalignment in upper-limb exoskeleton. In: 2011 IEEE International Conference on Rehabilitation Robotics. Proceedings, pp. 1–6. IEEE, Zurich (2011)

  17. Dehez, B., Sapin, J.: ShouldeRO, An alignment-free two-DOF rehabilitation robot for the shoulder complex. In: 2011 IEEE International Conference on Rehabilitation Robotics. Proceedings, pp. 141–148. IEEE, Zurich (2011)

  18. Galinski, D., Sapin, J., Dehez, B.: Optimal design of an alignment-free two-dof rehabilitation robot for the shoulder complex. In, IEEE International Conference on Rehabilitation Robotics. Seattle (2013)

    Book  Google Scholar 

  19. Bartenbach, V., Wyss, D., Seuret, D., Riener, R.: A lower limb exoskeleton research platform to investigate human-robot interaction. IEEE International Conference on Rehabilitation Robotics. IEEE, In (2015)

    Book  Google Scholar 

  20. Olivier, J., Bouri, M., Ortlieb, A., Bleuler, H., Clavel, R.: Development of an assistive motorized hip orthosis: Kinematics analysis and mechanical design. In: 2013 IEEE International Conference on Rehabilitation Robotics. Proceedings, pp. 1–5. IEEE, Washington (2013)

  21. Stienen, A.H.A., Hekman, E.E.G., Helm, F.C.T.V.D., Kooij, H.V.D.: Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE T. Robot. 25(3), 628–633 (2009)

    Article  Google Scholar 

  22. Sergi, F., Accoto, D., Tagliamonte, N.L., Carpino, G., Pathiyil, L., Guglielmelli, E.: A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots. In: 2010 IEEE International Conference on Robotics, Automation and Mechatronics. Proceedings, pp. 100–105. IEEE, Singapore (2010)

  23. Jarrasse, N., Morel, G.: Connecting a human limb to an exoskeleton. IEEE T. Robot. 28(3), 697–709 (2013)

    Article  Google Scholar 

  24. Meuleman, J., Asseldonk, E., Oort, G., Rietman, H., Kooij, H.: LOPES II: design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE T. Neur. Sys. Reh. 24(3), 352–363 (2015)

    Article  Google Scholar 

  25. Mao, Y., Jin, X., Dutta, G., Scholz, J., Agrawal, S.: Human movement training with a cable driven ARm EXoskeleton (CAREX). IEEE T. Neur. Sys. Reh. 23(1), 84 (2015)

    Article  Google Scholar 

  26. Cui, X., Chen, W., Jin, X., Agrawal, S.: Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE-ASME T. Mech. 22(1), 1–1 (2016)

    Google Scholar 

  27. Jin, X., Cui, X., Agrawal, S.: Design of a cable-driven active leg exoskeleton (C-ALEX) and gait training experiments with human subjucts. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5578–5583. IEEE, Seattle (2015)

  28. Li, J., Zhang, Z., Tao, C., Ji, R.: Structure design of lower limb exoskeletons for gait training. Chin. J. Mech. Eng. 28(5), 878–887 (2015)

    Article  Google Scholar 

  29. Li, J., Zhang, Z., Tao, C., Ji, R.: A number synthesis method of the self-adapting upper-limb rehabilitation exoskeletons. Int. J. Adv. Robot. Syst. 14(3), 1–14 (2017)

    Google Scholar 

  30. Schiele, A., Visentin, G.: The ESA human arm exoskeleton for space robotics telepresence. In: 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Proceedings. pp. 326–331. IEEE, Nara (2003)

  31. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 2–8 (2009)

    Article  Google Scholar 

  32. Walsh, C.J., Endo, K., Herr, H.: A quasi-passive leg exoskeleton for load-carrying augmentation. Int. J. Humanoid Robot. 4(3), 487–506 (2007)

    Article  Google Scholar 

  33. Rossi, S.M.M.D., Vitiello, N., Lenzi, T., Ronsse, R., Koopman, B., Persichetti, A., Vecchi, F., Ijspeert, A.J., Kooij, H.V.D., Carrozza, M.C.: Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors. 11, 207–227 (2011)

    Article  Google Scholar 

  34. Rathore, A., Wilcox, M., Ramirez, D.Z.M., Loureiro, R., Carlson, T.: Quantifying the human-robot interaction forces between a lower limb exoskeleton and healthy users. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 586–589. IEEE, Orlando (2016)

  35. Duque, J.T., Ugalde, R.C., Kilicarslan, A., Venkatakrishnan, A., Soto, R., Vidal, J.L.C.: Real-time strap pressure sensor system for powered exoskeletons. Sensors. 15, 4550–4563 (2015)

    Article  Google Scholar 

  36. Zanotto, D., Akiyama, Y., Stegall, P., Agrawal, S.: Knee joint misalignment in exoskeletons for the lower extremities: effects on user’s gait. IEEE T. Robot. 31(4), 978–987 (2015)

    Article  Google Scholar 

  37. Schiele, A.: An explicit model to predict and interpret constraint force creation in pHRI with exoskeletons. In: proceedings of IEEE international conference on robotics and automation. pp. 1324-1330. IEEE. Pasadena. (2008)

  38. Schiele, A.: Ergonomics of exoskeletons: Objective performance metrics. In: Proceedings of the Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Tele-operator Systems. pp. 103–108. Salt Lake City (2009)

  39. Schiele, A., Helmb, F.C.T.V.D.: Influence of attachment pressure and kinematic configuration on pHRI with wearable robots. Appl. Bionics Biomech. 6(2), 157–173 (2009)

    Article  Google Scholar 

  40. Jarrasse, N., Tagliabue, M., Robertson, J., Maiza, A., Crocher, V., Roby-Brami, A., Morel, G.: A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 389–397 (2010)

    Article  Google Scholar 

  41. Wang, H.: Anatomy of the human system. Fudan University Press, Shanghai, China (2008)

    Google Scholar 

  42. Cenciarini, M., Dollar, A.M.: Biomechanical considerations in the design of lower limb exoskeletons. In: 2011 IEEE international conference on rehabilitation robotics. IEEE. Zurich. (2011)

  43. Cai, V.A.D., Bidaud, P., Hayward, V.: Self-adjusting, isostatic exoskeleton for the human knee joint. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 612–618. IEEE, Boston (2011)

  44. Celebi, B., Yalcin, M., Patoglu, V.: AssistON- Knee: a self-aligning knee exoskeleton. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  45. Radcliffe, C.W.: Four-bar linkage prosthetic knee mechanisms: kinematics, alignment and prescription criteria. Prosthetics Orthot. Int. 8(18), 159–173 (1994)

    Article  Google Scholar 

  46. Yamaguchi, G.T., Zajac, F.E.: A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22(1), 1–10 (1989)

    Article  Google Scholar 

  47. Bapat, G., Sujatha, S.: A method for optimal synthesis of a biomimetic four-bar linkage knee joint for a knee-ankle-foot orthosis, J. Biomech. 32, 20–28 (2017)

    Google Scholar 

  48. Chen, G., Qi, P., Guo, Z., Yu, H.: Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech. & Mach. Theory. 103, 51–64 (2016)

    Article  Google Scholar 

  49. Xu, L., Wang, D.H., Fu, Q., Yuan, G., Hu, L.Z.: A novel four-bar linkage prosthetic knee based on magnetorheological effect: principle, structure, simulation and control. Smart Mater. Struct. 25(11), 115007 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 51675008 and No. 51705007, the Beijing Natural Science Foundation under Grants No. 3171001 and No. 17 L20019. Natural Science Foundation of Beijing Education Committee (No. KM201810005015) and China Postdoctoral Science Foundation (2018 T110017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiyu Zhang.

Ethics declarations

Conflict of Interest

We declare that we have no conflict of interest.

Additional information

Pulisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zuo, S., Xu, C. et al. Influence of a Compatible Design on Physical Human-Robot Interaction Force: a Case Study of a Self-Adapting Lower-Limb Exoskeleton Mechanism. J Intell Robot Syst 98, 525–538 (2020). https://doi.org/10.1007/s10846-019-01063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01063-5

Keywords

Navigation