Skip to main content
Log in

A Survey on Load Transportation Using Multirotor UAVs

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Load transportation by quadrotors and similar aircrafts is a topic of great interest to the robotics community nowadays, most likely due to logistic gains for deliveries of commercial cargo. Aiming at being the first reading for novice researchers and graduate students, this survey highlights meaningful research works of several groups worldwide, considering two basic approaches, namely grasped and cable-suspended load transportation. Different control techniques and maneuver strategies are analyzed, and their benefits and drawbacks are discussed. Moreover, experimental validation was a key aspect to the highlighted works, thus, links to the videos showing the experimental results are provided for each work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  2. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp 649–666. Springer (2016)

  3. Son, C.Y., Seo, H., Kim, T., Jin Kim, H: Model predictive control of a multi-rotor with a suspended load for avoiding obstacles. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 1–6. IEEE (2018)

  4. Kotaru, P., Wu, G., Sreenath, K.: Differential-flatness and control of quadrotor (s) with a payload suspended through flexible cable (s). arXiv:1711.04895 (2017)

  5. Tang, S., Wüest, V., Kumar, V.: Aggressive flight with suspended payloads using vision-based control. IEEE Robot. Autom. Lett. 3(2), 1152–1159 (2018)

    Article  Google Scholar 

  6. Guerrero, ME, Mercado, DA, Lozano, R, García, CD: Passivity based control for a quadrotor uav transporting a cable-suspended payload with minimum swing. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp 6718–6723. IEEE (2015)

  7. Pizetta, I.H.B., Brandão, A.S., Sarcinelli-Filho, M.: Modelling and control of a pvtol quadrotor carrying a suspended load. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp 444–450. IEEE (2015)

  8. Foehn, P, Falanga, D, Kuppuswamy, N, Tedrake, R, Scaramuzza, D: Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. In: Robotics: Science and Systems, pp 1–10 (2017)

  9. Tang, S., Sreenath, K., Kumar, V.: Aggressive maneuvering of a quadrotor with a cable-suspended payload. In: Robotics, Science and Systems, Workshop on Women in Robotics. Citeseer (2014)

  10. Lee, T.: Collision avoidance for quadrotor uavs transporting a payload via voronoi tessellation. In: American Control Conference (ACC), 2015, pp 1842–1848. IEEE (2015)

  11. Beard, R, Kingston, D, McLain, TW, Nelson, D: Decentralized cooperative aerial surveillance using fixed-wing miniature uavs (2006)

  12. Nunez, E.: Unmanned aerial systems flight and payload challenge (2018)

  13. Pounds, P.E.I, Dollar, A.: Hovering stability of helicopters with elastic constraints. In: ASME 2010 Dynamic Systems and Control Conference, pp 781–788. American Society of Mechanical Engineers (2010)

  14. Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: A literature review. IEEE Robot. Aut. Lett. 3(3), 1957–1964 (2018)

    Article  Google Scholar 

  15. Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2668–2673. IEEE (2011)

  16. Lindsey, Q., Mellinger, D., Kumar, V.: Construction of cubic structures with quadrotor teams. Proc. Robotics, Science & Systems VII (2011)

  17. Cheah, C.-C., Liu, C., Slotine, J.-J.E: Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int. J. Robot. Res. 25(3), 283–296 (2006)

    Article  Google Scholar 

  18. ARCAS: Arcas project (2011) http://www.arcas-project.eu

  19. Heredia, G., Jimenez-Cano, AE, Sanchez, I, Llorente, D., Vega, V, Braga, J, Acosta, JA, Ollero, A.: Control of a multirotor outdoor aerial manipulator. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp 3417–3422. IEEE (2014)

  20. Aeroarms: Aeroarms project (2015) https://aeroarms-project.eu

  21. Suarez, A., Soria, P.R., Heredia, G., Arrue, B.C., Ollero, A.: Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 992–997. IEEE (2017)

  22. Zhang, G., He, Y., Bo, D., Gu, F., Yang, L., Han, J., Liu, G., Qi, J.: Grasp a moving target from the air: System & control of an aerial manipulator. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp 1681–1687. IEEE (2018)

  23. Pounds, P.E.I, Bersak, D.R, Dollar, A.M.: Grasping from the air Hovering capture and load stability. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp 2491–2498. IEEE (2011)

  24. Kumar, V: Robot quadrotors perform james bond theme. University of Pennsylvania. General robotics, automation, sensing and perception (grasp) lab (2012)

  25. Augugliaro, F, Mirjan, A, Gramazio, F, Kohler, M, D’Andrea, R: Building tensile structures with flying machines. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3487–3492. IEEE (2013)

  26. Kim, S., Choi, S., Jin Kim, H: Aerial manipulation using a quadrotor with a two dof robotic arm. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 4990–4995. IEEE (2013)

  27. Lippiello, V, Cacace, J, Santamaria-Navarro, A, Andrade-Cetto, J, Trujillo, M.A., Esteves, Y.R., Viguria, A.: Hybrid visual servoing with hierarchical task composition for aerial manipulation. IEEE Robot. Autom. Lett. 1(1), 259–266 (2016)

    Article  Google Scholar 

  28. Korpela, C., Orsag, M., Paul, O.: Towards valve turning using a dual-arm aerial manipulator. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp 3411–3416. IEEE (2014)

  29. Kim, S, Seo, H, Jin Kim, H: Operating an unknown drawer using an aerial manipulator. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 5503–5508. IEEE (2015)

  30. Thomas, J, Loianno, G., Polin, J., Sreenath, K., Kumar, V.: Toward autonomous avian-inspired grasping for micro aerial vehicles. Bioinspiration & Biomimetics 9(2), 025010 (2014)

    Article  Google Scholar 

  31. Palunko, I., Cruz, P., Fierro, R.: Agile load transportation: Safe and efficient load manipulation with aerial robots. IEEE Robot. Autom. Mag. 19(3), 69–79 (2012)

    Article  Google Scholar 

  32. Faust, A., Palunko, I., Cruz, P., Fierro, R., Tapia, L.: Automated aerial suspended cargo delivery through reinforcement learning. Artif. Intell. 247, 381–398 (2017)

    Article  Google Scholar 

  33. Kamel, M, Alexis, K, Achtelik, M, Siegwart, R: Fast nonlinear model predictive control for multicopter attitude tracking on so (3). In: 2015 IEEE Conference on Control Applications (CCA), pp 1160–1166. IEEE (2015)

  34. Li, D, Cao, Q, Xia, Y, Gao, Y: Distributed mpc for formation of multi-agent systems with collision avoidance and obstacle avoidance. J. Franklin Inst. 354(4), 2068–2085 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Neunert, M, De Crousaz, C, Furrer, F, Kamel, M, Farshidian, F, Siegwart, R, Buchli, J: Fast nonlinear model predictive control for unified trajectory optimization and tracking. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 1398–1404. IEEE (2016)

  36. Michael, N, Fink, J, Kumar, V: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)

    Article  MATH  Google Scholar 

  37. Fink, J, Michael, N, Kim, S, Kumar, V: Planning and control for cooperative manipulation and transportation with aerial robots. Int. J. Robot. Res. 30(3), 324–334 (2011)

    Article  MATH  Google Scholar 

  38. Lobo, M.S., Vandenberghe, L, Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1-3), 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. De Marina, H.G., Jayawardhana, B., Cao, M.: Taming mismatches in inter-agent distances for the formation-motion control of second-order agents. IEEE Trans. Autom. Control 63(2), 449–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smeur, E.JJ, de Croon, G.C., Chu, Q.: Cascaded incremental nonlinear dynamic inversion for mav disturbance rejection. Control. Eng. Pract. 73, 79–90 (2018)

    Article  Google Scholar 

  41. de Marina, H.G., Smeur, E.: Flexible collaborative transportation by a team of rotorcraft. arXiv:1902.00279 (2019)

  42. Paparazzi: Uav open-source project (2018) http://wiki.paparazziuav.org

  43. Sreenath, K, Michael, N, Kumar, V: Trajectory generation and control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp 4888–4895. IEEE (2013)

  44. Cruz, P.J., Fierro, R.: Cable-suspended load lifting by a quadrotor uav: hybrid model, trajectory generation, and control. Auton. Robot. 41(8), 1629–1643 (2017)

    Article  Google Scholar 

  45. Goodarzi, F.A., Lee, D., Lee, T.: Geometric control of a quadrotor uav transporting a payload connected via flexible cable. Int. J. Control Autom. Syst. 13(6), 1486–1498 (2015)

    Article  Google Scholar 

  46. Goodarzi, F.A., Lee, T.: Stabilization of a rigid body payload with multiple cooperative quadrotors. J. Dyn. Syst. Measur. Control 138(12), 121001 (2016)

    Article  Google Scholar 

  47. Tang, S., Kumar, V.: Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 2216–2222. IEEE (2015)

  48. Posa, M., Tedrake, R.: Direct trajectory optimization of rigid body dynamical systems through contact. In: Algorithmic foundations of robotics X, pp 527–542. Springer (2013)

  49. Posa, M., Kuindersma, S., Tedrake, R.: Optimization and stabilization of trajectories for constrained dynamical systems. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 1366–1373. IEEE (2016)

  50. Ritz, R., D’Andrea, R.: Carrying a flexible payload with multiple flying vehicles. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3465–3471. IEEE (2013)

  51. Augugliaro, F., Lupashin, S., Hamer, M., Male, C., Hehn, M., Mueller, M.W., Willmann, J.S., Gramazio, F., Kohler, M., D’Andrea, R.: The flight assembled architecture installation: Cooperative construction with flying machines. IEEE Control. Syst. 34(4), 46–64 (2014)

    Article  MathSciNet  Google Scholar 

  52. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton. Robot. 33(3), 323–336 (2012)

    Article  Google Scholar 

  53. Mellinger, D., Shomin, Michael, Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: Distributed Autonomous Robotic Systems, pp 545–558. Springer (2013)

  54. Tang, S., Sreenath, K., Kumar, V.: Multi-robot trajectory generation for an aerial payload transport system. In: Proc. Int. Symp. Robot. Res (2017)

  55. Tang, S., Thomas, J., Kumar, V.: Hold or take optimal plan (hoop): A quadratic programming approach to multi-robot trajectory generation. Int. J. Robot. Res. 37(9), 1062–1084 (2018)

    Article  Google Scholar 

  56. Sreenath, K., Kumar, V.: Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. In: Proceedings of Robotics: Science and Systems, Berlin (2013)

  57. Gassner, M, Cieslewski, T, Scaramuzza, D.: Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 5196–5202. IEEE (2017)

  58. Lupashin, S., Hehn, M., Mueller, M.W., Schoellig, A.P., Sherback, M., D’Andrea, R.: A platform for aerial robotics research and demonstration: The flying machine arena. Mechatronics 24(1), 41–54 (2014)

    Article  Google Scholar 

  59. Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.-M., Hirzinger, G., Rus, D.: Energy-efficient autonomous four-rotor flying robot controlled at 1 khz. In: 2007 IEEE International Conference on Robotics and Automation, pp 361–366. IEEE (2007)

  60. Ardiny, H., Witwicki, S., Mondada, F.: Construction automation with autonomous mobile robots: A review. In: 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), pp 418–424. IEEE (2015)

  61. Branko, K: Architecture in the Digital Age. Design and Manufacturing. Taylor & Francis, New York (2003)

    Google Scholar 

  62. Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., Kohler, M.: Aerial robotic construction towards a new field of architectural research. Int. J. Arch. Comput. 10(3), 439–459 (2012)

    Google Scholar 

  63. Augugliaro, F., Schoellig, A.P., D’Andrea, R.: Generation of collision-free trajectories for a quadrocopter fleet: a sequential convex programming approach. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1917–1922. IEEE (2012)

  64. Loianno, G., Kumar, V.: Cooperative transportation using small quadrotors using monocular vision and inertial sensing. In: IEEE Robotics and Automation Letters (2017)

  65. Pippin, C.: Integrated hardware/software architectures to enable uavs for autonomous flight. In: Handbook of Unmanned Aerial Vehicles, pp 1725–1747. Springer (2015)

  66. Arbanas, B., Ivanovic, A., Car, M., Haus, T., Orsag, M., Petrovic, T., Bogdan, S.: Aerial-ground robotic system for autonomous delivery tasks. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 5463–5468. IEEE (2016)

  67. Orsag, M., Korpela, C., Bogdan, S., Paul, O.: Dexterous aerial robots—mobile manipulation using unmanned aerial systems. IEEE Trans. Robot. 33(6), 1453–1466 (2017)

    Article  Google Scholar 

  68. Hespanha, J.P., Stephen Morse, A: Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999, vol. 3, pp 2655–2660. IEEE (1999)

  69. Seo, H., Kim, S., Jin Kim, H: Aerial grasping of cylindrical object using visual servoing based on stochastic model predictive control. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 6362–6368. IEEE (2017)

  70. Ghadiok, V., Goldin, J., Ren, W.: On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. Auton. Robot. 33(1-2), 41–68 (2012)

    Article  Google Scholar 

  71. Lippiello, V., Ruggiero, F.: Exploiting redundancy in cartesian impedance control of uavs equipped with a robotic arm. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 3768–3773. IEEE (2012)

  72. Orsag, M., Korpela, C.M., Bogdan, S., Paul Yu, O.: Hybrid adaptive control for aerial manipulation. J. Intell. Robot. Syst. 73(1–4), 693–707 (2014)

    Article  Google Scholar 

  73. Alexis, K., Darivianakis, G., Burri, M., Siegwart, R.: Aerial robotic contact-based inspection: planning and control. Auton. Robot. 40(4), 631–655 (2016)

    Article  Google Scholar 

  74. Mebarki, R., Lippiello, V., Siciliano, B.: Image-based control for dynamically cross-coupled aerial manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp 4827–4833. IEEE (2014)

  75. Baizid, K., Giglio, G, Pierri, F., Trujillo, M.A., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., Ollero, A.: Experiments on behavioral coordinated control of an unmanned aerial vehicle manipulator system. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 4680–4685. IEEE (2015)

  76. Bartelds, T.J, Capra, A., Hamaza, S., Stramigioli, S., Fumagalli, M.: Compliant aerial manipulators: Toward a new generation of aerial robotic workers. IEEE Robot. Autom. Lett. 1(1), 477–483 (2016)

    Article  Google Scholar 

  77. Şenkul, A.F., Altuğ, E.: System design of a novel tilt-roll rotor quadrotor uav. J Intell Robot Syst 84 (1–4), 575–599 (2016)

    Article  Google Scholar 

  78. Brescianini, D., D’Andrea, R.: Design, modeling and control of an omni-directional aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 3261–3266. IEEE (2016)

  79. Ryll, M., Bülthoff, H.H., Giordano, P.R.: A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation. IEEE Trans. Control Syst. Technol. 23(2), 540–556 (2015)

    Article  Google Scholar 

  80. Oosedo, A., Abiko, S., Narasaki, S., Kuno, A., Konno, A., Uchiyama, M.: Flight control systems of a quad tilt rotor unmanned aerial vehicle for a large attitude change. IEEE (2015)

  81. Nguyen, H.-N., Park, S., Park, J., Lee, D.: A novel robotic platform for aerial manipulation using quadrotors as rotating thrust generators. IEEE Trans. Robot. 34(2), 353–369 (2018)

    Article  Google Scholar 

  82. Li, J.-W., Liu, H., Cai, H.-G.: On computing three-finger force-closure grasps of 2-d and 3-d objects. IEEE Trans. Robot. Autom. 19(1), 155–161 (2003)

    Article  Google Scholar 

  83. Estrada, M.A., Mintchev, S., Christensen, D.L., Cutkosky, M.R., Dario Floreano.: Forceful manipulation with micro air vehicles. Sci. Robot. 3(23), eaau6903 (2018)

    Article  Google Scholar 

  84. Christensen, D.L., Hawkes, E.W., Suresh, S.A., Ladenheim, K., Cutkosky, M.R.: μ tugs Enabling microrobots to deliver macro forces with controllable adhesives. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 4048–4055. IEEE (2015)

  85. Day, P., Eason, E.V., Esparza, N., Christensen, D., Cutkosky, M.: Microwedge machining for the manufacture of directional dry adhesives. J. Micro Nano-Manuf. 1(1), 011001 (2013)

    Article  Google Scholar 

  86. Wang, S., Jiang, H., Cutkosky, M.R: A palm for a rock climbing robot based on dense arrays of micro-spines. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 52–59. IEEE (2016)

  87. Beul, M, Nieuwenhuisen, M, Quenzel, J, Rosu, R.A., Horn, J., Pavlichenko, D., Houben, S., Behnke, S.: Team nimbro at mbzirc 2017: Fast landing on a moving target and treasure hunting with a team of micro aerial vehicles. Journal of Field Robotics

  88. MBZIRC: Mohamed bin zayed international robotics challenge (2017) https://www.mbzirc.com

  89. Loianno, G, Spurny, V, Baca, T, Thomas, J, Thakur, D, Hert, D., Penicka, R., Krajnik, T., Zhou, A., Cho, A., et al: Localization, grasping, and transportation of magnetic objects by a team of mavs in challenging desert like environments. IEEE Robotics and Automation Letters (2018)

  90. Bähnemann, R., Schindler, D., Kamel, M., Siegwart, R., Nieto, J.: A decentralized multi-agent unmanned aerial system to search, pick up, and relocate objects. arXiv:1707.03734 (2017)

  91. Gawel, A, Kamel, M, Novkovic, T, Widauer, J, Schindler, D, von Altishofen, BP, Siegwart, R, Nieto, J: Aerial picking and delivery of magnetic objects with mavs. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 5746–5752. IEEE (2017)

  92. PX4: Px4 development guide (2018) https://dev.px4.io/en/airframes/

  93. Saied, M, Lussier, B, Fantoni, I, Francis, C, Shraim, H, Sanahuja, G: Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 5266–5271. IEEE (2015)

  94. Yoo, D.-W., Oh, H.-D., Won, D.-Y., Tahk, M.-J.: Dynamic modeling and stabilization techniques for tri-rotor unmanned aerial vehicles. Int. J. Aeronaut. Space Sci. 11(3), 167–174 (2010)

    Article  Google Scholar 

  95. Tagliabue, A., Kamel, M., Verling, S., Siegwart, R., Nieto, J.: Collaborative transportation using mavs via passive force control. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 5766–5773. IEEE (2017)

  96. Tagliabue, A, Kamel, M, Siegwart, R, Nieto, J: Robust collaborative object transportation using multiple mavs. arXiv:1711.08753 (2017)

  97. Galceran, E, Carreras, M: A survey on coverage path planning for robotics. Robot. Autonom. Syst. 61 (12), 1258–1276 (2013)

    Article  Google Scholar 

  98. Kim, S., Seo, H., Shin, J., Jin Kim, H: Cooperative aerial manipulation using multirotors with multi-dof robotic arms. IEEE/ASME Trans. Mechatron. 23(2), 702–713 (2018)

    Article  Google Scholar 

  99. Khalil, H.K, Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  100. Back, J., Shim, H.: An inner-loop controller guaranteeing robust transient performance for uncertain mimo nonlinear systems. IEEE Trans. Autom. Control 54(7), 1601–1607 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  101. Kim, H., Seo, H., Son, C., Lee, H., Kim, S., Jin Kim, H: Cooperation in the air: A learning-based approach for efficient motion planning of aerial manipulators. IEEE Robotics & Automation Magazine (2018)

  102. Kim, H., Lee, H., Choi, S., Noh, Y.-k., Jin Kim, H: Motion planning with movement primitives for cooperative aerial transportation in obstacle environment. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp 2328–2334. IEEE (2017)

  103. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  104. Matsubara, T., Hyon, S.-H., Morimoto, J.: Learning parametric dynamic movement primitives from multiple demonstrations. Neural Netw. 24(5), 493–500 (2011)

    Article  Google Scholar 

  105. Tang, S., Kumar, V.: Autonomous flight. Ann. Rev. Control Robot. Auton. Sys. 1, 29–52 (2018)

    Article  Google Scholar 

  106. Villa, D.K.D.: Load transportation using quadrotors: a survey of experimental results. icuas’18 – the 2018 international conference on unmanned aircraft systems. https://sites.google.com/view/loadtransportationsurvey/home

Download references

Acknowledgments

The authors thank CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico, a Brazilian agency that supports scientific and technological development, as well as FAPES – Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, an agency of the State of Espírito Santo, Brazil, that supports scientific and technological development – for financing this project. Mr. Daniel Villa also thanks Fundação CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, an agency of the Brazilian Ministry of Education that supports human resources perfectioning, for the scholarship that allowed him to develop his Ph.D. studies, in where this work is inserted. Dr. Brandão also thanks FAPEMIG – Fundação de Amparo à Pesquisa de Minas Gerais – for supporting his participation in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. D. Villa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa, D.K.D., Brandão, A.S. & Sarcinelli-Filho, M. A Survey on Load Transportation Using Multirotor UAVs. J Intell Robot Syst 98, 267–296 (2020). https://doi.org/10.1007/s10846-019-01088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01088-w

Keywords

Navigation