Skip to main content
Log in

Lyapunov Theory Based Adaptive Neural Observers Design for Aircraft Sensors Fault Detection and Isolation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this research, two novel online fault detection algorithms are proposed for sensor faults in aircraft. Radial basis function neural network (RBFNN) is used as a fault detection technique, for weight updating parameters adaptive learning rates are used instead of fixed learning rates, two different adaptive learning rate strategies are proposed based on Lyapunov functions which are compared to Extended Kalman Filter (EKF) algorithm. Boeing 747–100/200 aircraft is used for testing and validation of these algorithms. All algorithms have the ability to detect various types of faults such as simultaneous, intermittent, abrupt and incipient with high preciseness and accuracy occur in aircraft sensors. The capability of sensors fault detection of all algorithms are compared, it is proved that all algorithms have the ability to detect faults but Lyapunov function theory II based algorithm is more efficient and having a fast response in faults detection as compared to Lyapunov function theory I and EKF based algorithms. It is also proved that the Lyapunov function theory II based algorithm is more effective in reducing the computational time and computation load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Napolitano, M., An, Y., Seanor, B., Pispistos, S., Martinelli, D.: Application of a neural sensor validation scheme to actual Boeing B737 flight data. Proc. Of the AIAA Guidance Navigation and Control Conference. (1999)

  2. Alessandri, A., Caccia, M., Veruggio, G.: Fault detection of actuator faults in unmanned underwater vehicle. Control. Eng. Pract. 7, 357–368 (1999)

    Article  Google Scholar 

  3. G. Heredia, A. Ollero, R. Mahtani, V. Remub and M. Mausial, “ Detection of sensor faults in autonomous helicopters,” proc. of the 2005 IEEE international conference on robotics and automation. Barcelona, Spain, 2005. R. C. baker and B. Charlie, “nonlinear unstable systems”, Int. J. Control., vol. 23, no. 4, pp. 123–145, 1989

  4. Yi, Y., Guo, L., Wang, H.: Adaptive statistic tracking control based on two-step neural networks with time delays. IEEE Trans. Neural Netw. 20(3), 420–429 (2009)

    Article  Google Scholar 

  5. Alvanchi, A., Lee, S., AbouRizk, S.: Modeling framework and architecture of hybrid system dynamics and discrete event simulation for construction. Comput.-Aided Civ. Infrastruct. Eng. 26(2), 77–91 (2011)

    Article  Google Scholar 

  6. Wandekokem, E.D., Mendel, E., Fabris, F., Valentim, M., Batista, R.J., Varejão, F.M., Rauber, T.W.: Diagnosing multiple faults in oil rig motor pumps using support vector machine classifier ensembles. Integr. Comput. Aided Eng. 18(1), 61–74 (2011)

    Article  Google Scholar 

  7. Goupil, P., Marcos, A.: The European ADDSAFE project: industrial and academic efforts towards advanced fault diagnosis. Control. Eng. Pract. 31, 109–125 (2014)

    Article  Google Scholar 

  8. Goupil, P., Boada-bauxell, J., Marcos, A., Rosa, P., Kerr, M., Dalbies, L.: An overview of the FP7 RECONFIGURE project: industrial, scientific and technological objectives. In 9th IFAC symposium on fault detection, supervision and safety of technical processes. 48, 976–981 (2015)

    Google Scholar 

  9. Kiyak, E., Kahvecioglu, A., Caliskan, F.: Aircraft sensor and actuator fault detection, isolation, and accommodation. J. Aerosp. Eng. 24, 46–58 (2011)

    Article  Google Scholar 

  10. Freeman, P., Seiler, P., Balas, G.J.: Air data system fault modeling and detection. Control. Eng. Pract. 21, 1290–1301 (2013)

    Article  Google Scholar 

  11. Castaldi, P., Mimmo, N., Simani, S.: Differential geometry based active fault tolerant control for aircraft. Control. Eng. Pract. 32, 227–235 (2014)

    Article  Google Scholar 

  12. Marzat, J., Piet-Lahanier, H., Damongeot, F., Walter, E.: Model-based fault diagnosis for aerospace systems: a survey. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 226, 1329–1360 (2012)

    Article  Google Scholar 

  13. Marzat, J., Piet-Lahanier, H., Damongeot, F., Walter, E.: Control-based fault detection and isolation for autonomous aircraft. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 226, 510–531 (2011)

    Article  Google Scholar 

  14. Avram, R.C., Zhang, X., Campbell, J., Muse, J.: IMU sensor fault diagnosis and estimation for quadrotor UAVs. In 9th IFAC symposium on fault detection, supervision and safety of technical processes. 48, 380–385 (2015)

    Google Scholar 

  15. Lu, P., van Kampen, E.-J., de Visser, C., Chu, Q.: Nonlinear aircraft sensor fault re- construction in the presence of disturbances validated by real flight data. Control. Eng. Pract. 49, 112–128 (2016)

    Article  Google Scholar 

  16. Zhang K, Jiang B, Yan X-G, Mao Z. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Trans 2016

  17. Djeghali N, Djennoune S, Bettayeb M, Ghanes M, Barbot J-P. Observation and sliding mode observer for nonlinear fractional-order system with unknown input. ISATrans 2016

  18. Zhang, D., Wang, Q.-G., YuL, S.H.: Fuzzy-model-based fault detection for a class of nonlinear systems with networked measurements. IEEE Trans InstrumMeas. 62, 3148–3159 (2013)

    Article  Google Scholar 

  19. Ballesteros-Moncada, H., Herrera-López, E.J., Anzurez Marín, J.: Fuzzy model-based observers for fault detection in CSTR. ISA Trans. 59, 325–333 (2015)

    Article  Google Scholar 

  20. Jee, S.C., Lee, H.J., Joo, Y.H.: Sensor fault detection observer design for nonlinear systems in Takagi–Sugeno's form. Nonlinear Dyn. 67, 2343–2351 (2012)

    Article  MathSciNet  Google Scholar 

  21. Talebi, H.A., Khorasani, K., Tafazoli, S.: A recurrent neural-network-based sensor and actuator fault detection and isolation _for nonlinear systems with application to the satellite's attitude control subsystem. Neural Network IEEE Trans. 20, 45–60 (2009)

    Article  Google Scholar 

  22. Chen, M., Shi, P., Lim, C.-C.: Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans SystMan Cybern: Syst. 46, 260–270 (2016)

    Google Scholar 

  23. Allen, W.H., Rubaai, A.: ChawlaR. Fuzzy neural network-based health monitoring for HVAC system variable-air-volume unit. IEEE Trans. Ind. Appl. 52, 2513–2524 (2016)

    Article  Google Scholar 

  24. Baghernezhad, F., Horasani, K.: Computationally intelligent strategies for robust fault detection, isolation, and identification of mobile robots. Neuro computing. 171, 335–346 (2016)

    Google Scholar 

  25. Chen J, Patton RJ. Robust model-based fault diagnosis for dynamic systems, 3. Springer Science & Business Media; 2012

  26. Patton RJ, Frank PM, Clark RN. Issues of fault diagnosis for dynamic systems. Springer Science & Business Media; 2013

  27. Du, D., Jiang, B.: Actuator fault estimation and accommodation for switched systems with time delay: discrete-time case. ISA Trans. 62, 137–144 (2016)

    Article  Google Scholar 

  28. Ashokkumar, C.R., York, G.W.P.: Unmanned aerial vehicle flight control evaluations under sensor and actuator faults. J. Intell. Robot. Syst. 88, 437 (2017). https://doi.org/10.1007/s10846-017-0514-9

    Article  Google Scholar 

  29. Guo, S., Zhu, F., Zhang, W., Zak, S.H., Zhang, J.: Fault detection and reconstruction for discrete nonlinear systems via Takagi-SugenoFuzzyModels. Int. J. Control. Autom. Syst. 16(6), 2676–2687 (2018). https://doi.org/10.1007/s12555-017-0582-4

    Article  Google Scholar 

  30. Yu, Z., Qu, Y., Zhang, Y.: Fault-tolerant containment control of multiple unmanned aerial vehicles based on distributed sliding-mode observer. J. Intell. Robot. Syst. (2018). https://doi.org/10.1007/s10846-018-0862-0

  31. Qin, L., He, X., Yan, R., et al.: Active fault-tolerant control for a quadrotor with sensor faults. J. Intell. Robot. Syst. 88, 449 (2017). https://doi.org/10.1007/s10846-017-0474-0

    Article  Google Scholar 

  32. Liu, Z., Yuan, C., Zhang, Y.: Active fault-tolerant control of unmanned quadrotor helicopter using linear parameter varying technique. J. Intell. Robot. Syst. 88, 415 (2017). https://doi.org/10.1007/s10846-017-0535-4

    Article  Google Scholar 

  33. Gao, Z., Cheng, P., Qian, M., Jiang, G., Lin, J.: Active fault-tolerant control approach design for rigid spacecraft with multiple actuator faults. Proc IMechE Part I: J Systems and Control Engineering. 232(10), 1365–1378 (2018). https://doi.org/10.1177/0959651818782847

    Article  Google Scholar 

  34. Gao, Z., Zhou, Z., Jiang, G., Qian, M., Lin, J.: Active fault tolerant control scheme for satellite attitude systems: multiple actuator faults case. Int. J. Control. Autom. Syst. 16(4), 1794–1804 (2018). https://doi.org/10.1007/s12555-016-0667-5

    Article  Google Scholar 

  35. Shen, Q., Jiang, B., Cocquempot, V.: Fault diagnosis and estimation for near-space hypersonic vehicle with sensor faults. Proc IMechE Part I: J Systems and Control Engineering. (2011). https://doi.org/10.1177/0959651811421227

  36. Jategaonkar, R. V., Flight Vehicle System Identification: A Time Domain Methodology, AIAA Progress in Astronautics and Aeronautics, Reston, VA, 2006

  37. Amin, S. M., Gerhart, V., and Rodin, E. Y., “System Identification via Artificial Neural Networks: Applications to On-line Aircraft Parameter Estimation,” AIAA and SAE World Aviation Congress, AIAA Paper 97–5612, 1997

  38. Manerowski, J., Zgrzywa, F., and Sibilski, K., A Neural Model of Coefficients of Forces and Moments of Aerodynamic Forces for a Turboprop Aircraft, AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2006–6281, 2006

  39. Aboutalebi, P., Abbaspour, A., Forouzannezhad, P., et al.: A novel sensor fault detection in an unmanned aerial vehicle based on adaptive neural observer. J. Intell. Robot. Syst. 90, 473 (2018). https://doi.org/10.1007/s10846-017-0690-7

    Article  Google Scholar 

  40. Chang, Y.-H., Wu, C.-I., Lin, H.-W.: Adaptive distributed fault-tolerant formation control for multi-robot SystemsunderPartialLossofActuatorEffectiveness. Int. J. Control. Autom. Syst. 16(5), 2114–2124 (2018). https://doi.org/10.1007/s12555-016-0587-4

    Article  Google Scholar 

  41. M.V. Cook. Flight Dynamics Principles. Elsevier Butterworth-Heinemann, 1997

  42. Sargolzaei, A., Yen, K.K., Abdelghani, M.N.: Preventing time-delay switch attack on load frequency control in distributed power systems. IEEE Trans Smart Grid. 7, 1176–1185 (2016)

    Google Scholar 

  43. Abbaspour, A., Aboutalebi, P., Yen, K.K., Sargolzaei, A.: Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV. ISA Trans. 67, 317–329 (2017)

    Article  Google Scholar 

  44. D’Angelo, M.F., Palhares, R.M., Takahashi, R.H., Loschi, R.H., Baccarini, L.M., Caminhas, W.M.: Incipient fault detection in induction machine stator-winding using a fuzzy-Baye-sian change point detection approach. Appl Soft Comput 2011. 11, 179–192

  45. Namdari, M., Jazayeri-Rad, H.: Incipient fault diagnosis using support vector machines based on monitoring continuous decision functions. Eng Appl ArtifIntell. 28, 22–35 (2014)

    Article  Google Scholar 

  46. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques— part I: fault diagnosis with model-based and signal-based approaches. Ind Electron, IEEE Trans. 62, 3757–3767 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research is co-supported by Shaanxi Province Key laboratory of flight control and simulation technology, the Fundamental Research Funds for the Central Universities (3102017OQD026) and Aeronautical Science Foundation of China under Grant No. 2016ZC53019 and No.20160153003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Taimoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taimoor, M., Aijun, L. Lyapunov Theory Based Adaptive Neural Observers Design for Aircraft Sensors Fault Detection and Isolation. J Intell Robot Syst 98, 311–323 (2020). https://doi.org/10.1007/s10846-019-01098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01098-8

Keywords

Navigation