Skip to main content
Log in

Combined Electromagnetic and Mechanical Ultrasound for Particle Dispersion in Liquid Metals

  • Metal Matrix Composites: Analysis, Modeling, Observations and Interpretations
  • Published:
JOM Aims and scope Submit manuscript

Abstract

It is known that acoustic cavitation is one of the mechanisms resulting in the dispersion of small particles in liquid metallic alloys. Previous research has shown that the contactless electromagnetic method can be used to induce such cavitation and disperse particles in metals, where the application of a high-frequency alternating magnetic field plus a static magnetic field results in pressure oscillations that can become strong enough to disperse particles. Promising results have been obtained on the laboratory scale for some metal/particle pairs such as tin/silicon carbide (Sn/SiC) and chrome steel/titanium nitride (FeCr/TiN). We present herein the idea of combining such electromagnetically induced ultrasound with the application of mechanical ultrasound to a liquid melt to achieve enhanced particle mixing and dispersion. This combined method allows the achievement of a strong oscillating pressure with simultaneous significant stirring of the melt. This approach has the potential to stir and disperse particles in a single-stage process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Ozben, E. Kilickap, and O. Cakir, J. Mater. Process. Technol. 198, 220 (2008).

    Article  Google Scholar 

  2. M. Taya, Mater. Trans. JIM 32, 1 (1991).

    Article  Google Scholar 

  3. M. Garrido, L. Davoust, R. Daudin, L. Salvo, and Y. Fautrelle, IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/424/1/012001.

    Article  Google Scholar 

  4. C. Cui, Y. Shen, F. Meng, and S. Bong Kang, J. Mater. Sci. Technol. 16, 619 (2000).

    Article  Google Scholar 

  5. J. Idris and M.A. Kabir, Process. Fab. Adv. Mater. VIII, 921 (2001).

    Article  Google Scholar 

  6. J. Kim, J. Yeom, K. Ha, J. Kim, and M. Kim, IEEE Int. Ultrason. Symp. (2016). https://doi.org/10.1109/ultsym.2016.7728527.

    Article  Google Scholar 

  7. I. Tzanakis, G.S.B. Lebon, D.G. Eskina, and K. Pericleous, Mater. Des. 90, 979 (2016).

    Article  Google Scholar 

  8. D. Zhang and L. Nastac, J. Mater. Res. Technol. 3, 296 (2014).

    Article  Google Scholar 

  9. I. Grants, G. Gerbeth, and A. Bojarevics, J. Appl. Phys. 117, 204901 (2015).

    Article  Google Scholar 

  10. A. Manoylov, V. Bojarevics, and K. Pericleous, Metall. Mater. Trans. A 46, 2893 (2015).

    Article  Google Scholar 

  11. I. Kaldre, A. Bojarevics, I. Grants, T. Beinerts, M. Kalvans, M. Milgravis, and G. Gerbeth, Acta Mater. 118, 253 (2016).

    Article  Google Scholar 

  12. G.S. Bruno Lebon, I. Tzanakis, K. Pericleous, D. Eskin, and P.S. Grant, Ultrason. Sonochem. 55, 243 (2019).

    Article  Google Scholar 

  13. T. Beinerts, A. Bojarevics, R. Baranovskis, M. Milgravis, and I. Kaldre, IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/424/1/012037.

    Article  Google Scholar 

  14. M. Sarma, M. Ščepanskis, A. Jakovičs, K. Thomsen, R. Nikoluškins, P. Vontobel, T. Beinerts, A. Bojarevičs, and E. Platacis, Phys. Proc. 69, 457 (2015).

    Article  Google Scholar 

  15. P. Muller, R. Barnkob, M.J. Jensen, and H. Bruus, Lab Chip 12, 4617 (2012).

    Article  Google Scholar 

  16. H. Hu, Z. Zhou, L. Liao, M. Wang, and S. Li, J. Phys. Conf. Ser. 419, 012029 (2013).

    Article  Google Scholar 

  17. S. Li, A. Zhou, M. Wang, H. Hu, L. Zou, G. Zhang, and L. Zhang, J. Phys. Conf. Ser. 419, 012036 (2013).

    Article  Google Scholar 

  18. A. Bojarevics, T. Beinerts, I. Grants, I. Kaldre, A. Sivars, G. Gerbeth, and Yu Gelfgat, Magnetohydrodynamics 51, 437 (2015).

    Article  Google Scholar 

  19. I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins, J. Cryst. Growth 402, 230 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a PostDoc Latvia postdoctoral research grant “Electromagnetic methods for metal matrix nano-composite production” No. 1.1.1.2/VIAA/2/18/264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imants Kaldre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaldre, I., Bojarevics, A. Combined Electromagnetic and Mechanical Ultrasound for Particle Dispersion in Liquid Metals. JOM 72, 2892–2897 (2020). https://doi.org/10.1007/s11837-020-04160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04160-1

Navigation