Skip to main content
Log in

Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A rubrene-based nanostructure has been prepared by applying the evaporation method at room temperature. The 60Co \( \gamma \)-ray irradiation effects on the electrical properties of the rubrene nanostructure were also examined by measuring current–voltage values. Standard, Norde, and Cheung methods have been used to obtain series resistance, interface states, barrier height, and an ideality factor before and after gamma rays. After obtaining the required information from these methods, they have been compared with each other before and after irradiation. The behavior of barrier height is dependent on the evaluated methods. Cheung, Standard, and Norde functions are different from each other owing to extraction from different regions of the plots. It has also been revealed that the ideality factor values for all the methods decrease with irradiation as do the electrical properties, such as series resistance evaluated using Norde and Cheung methods. These two methods give the same results. All the methods revealed that the series resistance values increase with irradiation. Further, these parameters are dependent on the strong functions of voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Podzorov, S.E. Loginova, V.M. Pudalov, and M.E. Gershenson, Appl. Phys. Lett. 83, 17 (2003).

    Article  Google Scholar 

  2. G.D. Sharma, S.K. Sharma, and M.S. Roy, Thin Solid Films 468, 208 (2004).

    Article  Google Scholar 

  3. T.S. Shafai, Thin Solid Films 517, 1200 (2008).

    Article  Google Scholar 

  4. M.S. Roy, G.D. Sharma, and S.K. Gupta, Thin Solid Films 310, 279 (1997).

    Article  Google Scholar 

  5. M.E. Aydın, F. Yakuphanoğlu, and T. Kılıçoğlu, Synth. Met. 157, 1080 (2007).

    Article  Google Scholar 

  6. V.C. Sundar, J. Zaumseil, V. Podrozov, E. Menard, R.L. Millett, T. Someya, M.E. Gershenson, and J.A. Rogers, Science 303, 1644 (2004).

    Article  Google Scholar 

  7. T. Tsutsui and J. Kido, Synth. Met. 91, 131 (1997).

    Article  Google Scholar 

  8. O.D. Jurchescu, A. Meetsma, and T.T.M. Palstra, Acta Crystallogr. B 62, 330 (2006).

    Article  Google Scholar 

  9. E. Menard, A. Marchenko, V. Podzorov, M.E. Gershenson, D. Fichou, and J.A. Rogers, Adv. Mater. 18, 1552 (2006).

    Article  Google Scholar 

  10. Y. Luo, F. Gustova, J.Y. Henry, F. Mathevet, F. Lefloch, M. Sanquer, P. Rannou, and B. Grevin, Adv. Mater. 19, 2267 (2007).

    Article  Google Scholar 

  11. S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, J. Pflaum, L. Cavalcanti, and O. Konovalov, Phys. Chem. Chem. Phys. 8, 1834 (2006).

    Article  Google Scholar 

  12. L. Wang, S. Chen, L. Liu, D. Qi, X. Gao, and A.T.S. Wee, Appl. Phys. Lett. 90, 132121 (2007).

    Article  Google Scholar 

  13. D. Käfer, L. Ruppel, G. Witte, and C.H. Wöll, Phys. Rev. Lett. 95, 166602 (2005).

    Article  Google Scholar 

  14. D. Käfer and G. Witte, Phys. Chem. Chem. Phys. 7, 2850 (2005).

    Article  Google Scholar 

  15. P.R. Ribič and G. Bratina, J. Phys. Chem. C 111, 18558 (2007).

    Article  Google Scholar 

  16. M. Pivetta, M.-C. Blüm, F. Patthey, and W.-D. Schneider, Angew. Chem. Int. Ed. 47, 1076 (2008).

    Article  Google Scholar 

  17. M.-C. Blüm, E. Ćavar, M. Pivetta, F. Patthey, and W.-D. Schneider, Angew. Chem. Int. Ed. 44, 5334 (2005).

    Article  Google Scholar 

  18. M.-C. Blüm, M. Pivetta, F. Patthey, and W.-D. Schneider, Phys. Rev. B 73, 195409 (2006).

    Article  Google Scholar 

  19. D.M. Finton, E.A. Wolf, V.S. Zoutenbier, K.A. Ward, and I. Biaggio, AIP Adv. 9, 095027 (2019).

    Article  Google Scholar 

  20. M. Yamaguchi, Sol. Energy. Mater. Sol. Cells 68, 31 (2001).

    Article  Google Scholar 

  21. K.H. Zainninger and A.G. Holmes-Siedle, RCA Rev. 28, 208 (1967).

    Google Scholar 

  22. T.P. Ma, Semicond. Sci. Technol. 4, 1061 (1989).

    Article  Google Scholar 

  23. A. Tataroğlu, M. Yıldırım, and H. Baran, Mater. Sci. Semicond. Process. 28, 89 (2014).

    Article  Google Scholar 

  24. S.K. Cheung and N.W. Cheung, Appl. Phys. 49, 85 (1986).

    Google Scholar 

  25. H. Uslu, M. Yıldırım, S. Altındal, and P. Durmus, Radiat. Phys. Chem. 81, 362 (2012).

    Article  Google Scholar 

  26. A. Modinos, Surf. Sci. 115, 469 (1982).

    Article  Google Scholar 

  27. H. Norde, J. Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  28. H.C. Card and E.H. Rhoderick, J. Phys. D 4, 1589 (1971).

    Article  Google Scholar 

  29. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1988).

    Google Scholar 

  30. S.J. Konezny, M.N. Bussac, and L. Zuppiroli, Appl. Phys. Lett. 95, 263311 (2009).

    Article  Google Scholar 

  31. G.R. Odette and D.T. Hoelzer, J. Miner. Met. Mater. Soc. 62, 84 (2010).

    Article  Google Scholar 

  32. M.J. Pattabi, S. Krishnan, and G.X. Mathew, Sol. Energy 81, 111 (2007).

    Article  Google Scholar 

  33. O. Gullu, T. Kilicoglu, and A. Türüt, J. Phys. Chem. Solids 71, 351 (2010).

    Article  Google Scholar 

  34. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  Google Scholar 

  35. R. Ertuğrul and A. Tataroğlu, Radiat. Eff. Defects in Solids 169, 791 (2014).

    Article  Google Scholar 

  36. D.Akay and S.B. Ocak, Surf. Rev. Lett. 1950156 (2019).

  37. D. Akay, E. Efil, N. Kaymak, E. Orhan, and S.B. Ocak, J. Radioanal. Nucl. Chem. 318, 1409 (2018).

    Article  Google Scholar 

  38. D. Akay, U. Gokmen, and S.B. Ocak, Phys. Scr. 94, 115302 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Project Office at Gazi University in Turkey with the research Project No. 65/2019-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Ocak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akay, D., Gokmen, U. & Ocak, S.B. Ionizing Radiation Influence on Rubrene-Based Metal Polymer Semiconductors: Direct Information of Intrinsic Electrical Properties. JOM 72, 2391–2397 (2020). https://doi.org/10.1007/s11837-020-04156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04156-x

Navigation