Skip to main content
Log in

Surface microtextures and new U–Pb dating of detrital zircons from the Eocene Strihovce sandstones in the Magura Nappe of the External Western Carpathians: implications for their provenance

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Heavy mineral morphological, chemical and isotopic features are strong discriminative parameters in provenance studies. This paper focuses on the micro-textural signatures of detrital zircon grains obtained by scanning electron microscope (SEM) and U–Pb geochronological dating from the Strihovce Formation sandstones of the Magura Nappe in the External Western Carpathians. Our focus provides an important contribution to understanding the provenance of these sedimentary rocks. Although the SEM images reveal few dissolution features, they highlight many marks of mechanical processes which occur during detrital zircon transport. The detrital zircon U–Pb ages range from Mesoarchean–Neoproterozoic through Cambrian to Permian and Late Cretaceous. The pronounced peak at approximately 480 Ma Ordovician indicates the culmination of the peri-Gondwanan magmatic event. In conjunction with Archean to Proterozoic zircon inheritance, it implies Cadomian affinity of the potential source terranes which supplied the Magura Basin. The approximate ages of 379 Ma for the Late Devonian peak and 264 Ma for the Permian relate to widespread magmatism and/or rhyolite volcanism. These sources could be associated with the Carpathian basement units and the Apuseni terranes of the Tisza/Dacia mega-units. Most importantly, the sub-hedral Proterozoic zircons may signal the input of ‘first-cycle’ material from relatively closer surroundings, including the South-Magura Ridge to the Magura Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anczkiewicz R, Cieszkowski M, Szcęch M, Ślączka A, Wolska A (2018) A new approach to the problem of the ophiolite from Osielec–Magura Nappe, Outer Carpathians, Poland. In: Neubauer F et al (eds) CBGA 2018—Austria: advances of geology in southeast European mountain belts. Geologica Balcanica, Geological Institute, Bulgarian Academy of Sciences, p 108

  • Balan E, Trocellier P, Jupille J, Fritsch E, Muller JP, Calas G (2001) Surface chemistry of weathered zircons. Chem Geol 181:13–22. https://doi.org/10.1016/S0009-2541(01)00271-6

    Article  Google Scholar 

  • Balintoni IC (2000) Geologic and isotopic models for the Carpathian crystalline evolution. Stud UBB Geol 45:47–54

    Google Scholar 

  • Balintoni I (2019) Geology of Romania. In: Ponta GML, Onac P (eds) Cave and karst systems in Romania, cave and karst systems of the World. Springer Nature, pp 9–20

  • Balintoni IC, Balica C (2012) Zircon recrystallization history as a function of the U-content and its geochronologic implications: empirical facts on zircons from Romanian Carpathians and Dobrogea. In: Sztwiertnia K (ed) Recrystallization. IntechOpen, pp 303–328

  • Balintoni I, Balica C (2013) Carpathian peri-Gondwanan terranes in the East Carpathians (Romania): a testimony of an Ordovician, North-African orogeny. Gondwana Res 23:1053–1070. https://doi.org/10.1016/j.gr.2012.07.013

    Article  Google Scholar 

  • Balintoni I, Balica C, Cliveti M, Li LQ, Hann HP, Chen F, Schuller V (2006) New U/Pb and Pb/Pb zircon ages from the Biharia terrane rocks, Apuseni Mountains, Romania. Stud UBB Geol 51:61–65

    Google Scholar 

  • Balintoni I, Balica C, Zaharia L, Chen F, Cliveti M, Hann HP, Ghergari L (2007a) The Apuseni Mountains, Romania, a Variscan collage of Ordovician Gondwanan terranes. In: EOS Transactions, American Geophysical Union, Fall Meeting Supplement, vol 88, Abstract V13A–1138

  • Balintoni I, Balica C, Zaharia L, Cliveti M, Chen F, Hann HP, Li LQ (2007b) The age of the Variscan suture in the Apuseni Mountains, Romania, as revealed by LA-ICP-MS zircon dating. In: EOS Transactions, American Geophysical Union, Fall Meeting Supplement, vol 88, Abstract V13A–1139

  • Balintoni I, Balica C, Cliveţi M, Li LQ, Hann H, Chen F, Schuller V (2009) The emplacement age of the Muntele mare Variscan granite (Apuseni Mountains, Romania). Geol Carpath 60:495–504. https://doi.org/10.2478/v10096-009-0036-x

    Article  Google Scholar 

  • Balintoni I, Balica C, Ducea MN, Zaharia L, Chen FK, Cliveţi M, Hann HP, Li LQ, Ghergari L (2010) Late Cambrian-Ordovician northeastern Gondwanan terranes in the basement of the Apuseni Mountains, Romania. J Geol Soc 167:1131–1145. https://doi.org/10.1144/0016-76492009-156

    Article  Google Scholar 

  • Balintoni I, Balica C, Ducea M, Hann HP (2014) Peri-Gondwanan terranes in the Romanian Carpathians: a review of their spatial distribution, origin, provenance, and evolution. Geosci Front 5:395–411. https://doi.org/10.1016/j.gsf.2013.09.002

    Article  Google Scholar 

  • Balogh K, Kovách Á (1973) A battonyai kvarcporfir korának meghatározása a Rb/Sr módszerrel. Atomki Közlemények 15:245–250 (Hungarian)

    Google Scholar 

  • Basu A (2017) Evolution of siliciclastic provenance inquiries: a critical appraisal. In: Mazumder R (ed) Sediment provenance: influence on compositional change from Source. Elsevier, pp 5–23

  • Belousova EA, Griffin WL, O'Reilly SY (2006) Zircon morphology, trace element signatures and Hf-isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J Petrol 47:329–353. https://doi.org/10.1093/petrology/egi077

    Article  Google Scholar 

  • Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Mineral Petrol 114:441–451. https://doi.org/10.1007/BF00321749

    Article  Google Scholar 

  • Berza T, Ilinca G (2014) Late Cretaceous Banatitic magmatism and metallogeny in the frame of the Eoalpine tectonics from the Carpathian-Balkan orogen. In: Beqiraj A (ed) 20th congress of the Carpathian-Balkan geological association. Buletini i Shkencave Gjeologjike, Tirana, pp 145–148

    Google Scholar 

  • Berza T, Constantinescu E, Vlad S-N (1998) Upper Cretaceous magmatic series and associated mineralisation in the Carpathian-Balkan Orogen. Resour Geol 48:291–306. https://doi.org/10.1111/j.1751-3928.1998.tb00026.x

    Article  Google Scholar 

  • Bezák V, Broska I, Elečko M, Havrila M, Ivanička J, Janočko J, Kaličiak M, Konečný V, Lexa J, Mello J, Plašienka D, Polák M, Potfaj M, Vass D (2004) Explanations to the tectonic map of Slovak Republic 1: 500,000. State Geol. Inst. D. Štúr, Bratislava

    Google Scholar 

  • Birkenmajer K (1986) Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Stud Geol Polon 88:7–32

    Google Scholar 

  • Boiko A, Bartnitzkii E, Tepliakova N (1982) New ages of the detrital zircons from the oldest rocks of the Maramures Massif (in Russian). J Geol Kiev 42(3):123–127

    Google Scholar 

  • Bonin B, Tatu M (2016) Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania. Miner Petrol 110:447–469. https://doi.org/10.1007/s00710-015-0419-x

    Article  Google Scholar 

  • Bowles JFW, Howie RA, Vaughan DJ, Zussman J (2011) Rock-forming minerals. Non-silicates, oxides, Hydroxides and Sulphides, 2nd edn. Geological Society, London

    Google Scholar 

  • Bónová K (2018) Heavy minerals in sandstone formations of the Magura Zone (Eastern Slovakia)—provenance and palaeogeographic implications (in Slovak with English summary). P. J. Šafárik University, Košice

    Google Scholar 

  • Bónová K, Bóna J, Kováčik M, Laurinc D (2016) Heavy minerals from sedimentary rocks of the Malcov Formation and their palaeogeographic implications for evolution of the Magura Basin (Western Carpathians, Slovakia) during the Late Eocene-Late Oligocene. Geol Q 60:675–694. https://doi.org/10.7306/gq.1285

    Article  Google Scholar 

  • Bónová K, Spišiak J, Bóna J, Kováčik M (2017) Chromian spinels from the Magura Unit (Western Carpathians, Eastern Slovakia)—their petrogenetic and palaeogeographic implications. Geol Q 61:3–17. https://doi.org/10.7306/gq.1292

    Article  Google Scholar 

  • Bónová K, Bóna J, Kováčik M, Mikuš T (2018a) Heavy minerals and exotic pebbles from the Eocene flysch deposits of the Magura Nappe (Outer Western Carpathians, Eastern Slovakia): their composition and implications on the provenance. Turk J Earth Sci 27:64–88. https://doi.org/10.3906/yer-1707-9

    Article  Google Scholar 

  • Bónová K, Mikuš T, Bóna J (2018b) Is Cr-spinel geochemistry enough for solving the provenance dilemma? Case study from the Palaeogene Sandstones of the Western Carpathians (Eastern Slovakia). Minerals 8(543):1–24. https://doi.org/10.3390/min8120543

    Article  Google Scholar 

  • Bónová K, Bóna J, Pańczyk M, Kováčik M, Mikuš T, Laurinc D (2019) Origin of deep-sea clastics of the Magura Basin (Eocene Makovica sandstones in the Outer Western Carpathians) with constraints of framework petrography, heavy mineral analysis and zircon geochronology. Palaeogeogr Palaeoclimatol Palaeoecol 514:768–784. https://doi.org/10.1016/j.palaeo.2018.09.025

    Article  Google Scholar 

  • Broska I, Uher P (1991) Regional typology of zircon and its relationship to allanite/monazite antagonism (on an example of Hercynian granitoids of Western Carpathians). Geol Carpath 42:271–277

    Google Scholar 

  • Broska I, Uher P (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geol Carpath 52:79–90

    Google Scholar 

  • Broska I, Petrík I, Uher P (2012) Akcesorické minerály granitoidných hornín Západných Karpát. Veda, Bratislava

    Google Scholar 

  • Broska I, Petrík I, Be’eri-Shlevin Y, Majka J, Bezák V (2013) Devonian/Mississippian I-type granitoids in the Western Carpathians: a subduction-related hybrid magmatism. Lithos 162:27–36. https://doi.org/10.1016/j.lithos.2012.12.014

    Article  Google Scholar 

  • Buda G, Puskás Z, Gál-Sólymos K, Klötzli U, Cousens BL (1999) Mineralogical, petrological and geochemical characteristics of crystalline rocks of Üveghuta boreholes (Mórágy hills, South Hungary). Annu Rep Geol Inst Hungary 2000:231–243

    Google Scholar 

  • Budzyń B, Hetherington CJ, Williams ML, Jercinovic MJ, Dumond G, Michalik M (2008a) Application of electron probe microanalysis Th–U–total Pb geochronology to provenance studies of sedimentary rocks: An example from the Carpathian flysch. Chem Geol 254:148–163

    Google Scholar 

  • Budzyń B, Kusiak MA, Dunkley DJ, Poprawa P, Malata T (2008b) SHRIMP dating of zircon in crystalline rocks clasts from the Carpathian flysch. Geophysical Research Abstracts, vol 10, EGU2008-A-08345

  • Budzyń B, Dunkley DJ, Kusiak MA, Poprawa P, Malata T, Skiba M, Paszkowski M (2011) SHRIMP U–Pb zircon chronology of the Polish Western Outer Carpathians source areas. Ann Soc Geol Pol 81:161–171

    Google Scholar 

  • Burda J, Klötzli U (2011) Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating. Miner Petrol 102:99–115. https://doi.org/10.1007/s00710-011-0176-4

    Article  Google Scholar 

  • Burda J, Woskowicz-Ślęzak B, Klötzli U, Gawęda A (2019) Cadomian protolith ages of exotic mega blocks from Bugaj and Andrychów (Western Outer Carpathians, Poland) and their palaeogeographic significance. Geochronometria 46:25–36. https://doi.org/10.1515/geochr-2015-0102

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53, pp 427–467

  • Costa PJM, Andrade C, Dawson AG, Mahaney WC, Freitas MC, Paris R, Taborda R (2012) Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sediment Geol 275–276:55–69. https://doi.org/10.1016/j.sedgeo.2012.07.013

    Article  Google Scholar 

  • Dangić A, Mantea G (2008) Cretaceous karst bauxites in the Apuseni Mts. in the SW Carpathians and the Vlasenica area in the Dinarides: mineralogy and geochemistry. Bull Nat Hist Mus 1:9–24

    Google Scholar 

  • Dill HG, Weber B, Klosa D (2012) Morphology and mineral chemistry of monazite–zircon-bearing stream sediments of continental placer deposits (SE Germany): ore guide and provenance marker. J Geochem Explor 112:322–346. https://doi.org/10.1016/j.gexplo.2011.10.006

    Article  Google Scholar 

  • Dirnerová D, Farkašovský R (2018) Sedimentary record comparison of the Piwniczna and Poprad sandstones (Magura Unit, Outer Carpathians)—a study from the border area of eastern Slovakia and Poland. Geol Q 62:881–895. https://doi.org/10.7306/gq.1445

    Article  Google Scholar 

  • Ducea MN, Giosan L, Carter A, Balica C, Stoica AM, Roban RD, Balintoni I, Filip F, Petrescu L (2018) U-Pb detrital zircon geochronology of the lower danube and its tributaries: implications for the geology of the Carpathians. Geochem Geophys Geosyst 19:3208–3223. https://doi.org/10.1029/2018GC007659

    Article  Google Scholar 

  • Ebner F, Vozárová A, Kovács S, Krautner H, Krstic B, Szederkenyi T, Jamičič D, Balen D, Belak M, Trajanova M (2008) Devonian-Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geol Carpath 59:159–195

    Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem 53:277–303. https://doi.org/10.2113/0530277

    Article  Google Scholar 

  • Finzel ES (2017) Detrital zircon microtextures and U–Pb geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin. Tectonics 36:1295–1316. https://doi.org/10.1002/2017TC004549

    Article  Google Scholar 

  • Fornelli A, Micheletti F, Langone A, Perrone V (2015) First U-Pb detrital zircon ages from Numidian sandstones in southern Apennines (Italy): evidences of African provenance. Sediment Geol 320:19–29. https://doi.org/10.1016/j.sedgeo.2015.02.005

    Article  Google Scholar 

  • Gaab AS, Poller U, Janák M, Kohút M, Todt W (2005) Zircon U-Pb geochronology and isotopic characterization for the pre-Mesozoic basement of the Northern Veporic Unit (Central Western Carpathians, Slovakia). Schw Mineral Petrograph Mitt 85:69–88

    Google Scholar 

  • Gallhofer D, Quadt AV, Peytcheva I, Schmid SM, Heinrich CA (2015) Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen. Tectonics 34:1813–1836. https://doi.org/10.1002/2015TC003834

    Article  Google Scholar 

  • Garzanti E (2016) From static to dynamic provenance analysis-sedimentary petrology upgraded. Sediment Geol 336:3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010

    Article  Google Scholar 

  • Garzanti E (2017) The maturity myth in sedimentology and provenance analysis. J Sediment Res 87:353–365. https://doi.org/10.2110/jsr.2017.17

    Article  Google Scholar 

  • Garzanti E, Limonta M, Resentini A, Bandopadhyay PC, Najman Y, Andò S, Vezzoli G (2013) Sediment recycling at convergent plate margins (Indo-Burman ranges and Andaman-Nicobar Ridge). Earth Sci Rev 123:113–132. https://doi.org/10.1016/j.earscirev.2013.04.008

    Article  Google Scholar 

  • Garzanti E, Resentini A, Andò S, Vezzoli G, Pereira A, Vermeesch P (2015) Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology 62:971–996. https://doi.org/10.1111/sed.12169

    Article  Google Scholar 

  • Garzanti E, Andò S, Limonta M, Fielding L, Najman Y (2018) Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): implications for provenance reconstructions. Earth Sci Rev 185:122–139. https://doi.org/10.1016/j.earscirev.2018.05.010

    Article  Google Scholar 

  • Gawęda A, Golonka J, Waśkowska A, Szopa K, Chew D, Starzec K, Wieczorek A (2019) Neoproterozoic crystalline exotic clasts in the Polish Outer Carpathian flysch: remnants of the Proto-Carpathian continent? Int J Earth Sci 108:1409–1427. https://doi.org/10.1007/s00531-019-01713-x

    Article  Google Scholar 

  • Gärtner A, Linnemann U, Sagawe A, Hofmann M, Ullrich B, Kleber A (2013) Morphology of zircon crystal grains in sediments—characteristics, classifications, definitions. Geol Saxonica 59:65–73

    Google Scholar 

  • Gehrels G (2014) Detrital zircon U-Pb geochronology applied to tectonics. Ann Rev Earth Planet Sci 42:127–149. https://doi.org/10.1146/annurev-earth-050212-124012

    Article  Google Scholar 

  • Geological map of Slovakia at scale 1:50,000 [online] (2013) SGIDS, Bratislava [cit. 18. 04. 2018]. http://mapserver.geology.sk/gm50js

  • Golonka J, Gahagan L, Krobicki M, Marko F, Oszczypko N, Ślączka A (2006) Plate tectonic evolution and paleogeography of the Circum-Carpathian Region. In: Golonka J, Picha F (eds) The Carpathians and their foreland: geology and hydrocarbon resources, vol 84. American Association of Petroleum Geologists Memoir, pp 11–46

  • Golonka J, Pietsch K, Marzec P, Kasperska M, Dec J, Cichostępski K, Lasocki S (2019) Deep structure of the Pieniny Klippen Belt in Poland. Swiss J Geosci 112:475–506. https://doi.org/10.1007/s00015-019-00345-2

    Article  Google Scholar 

  • Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineral Mag 63:179–187. https://doi.org/10.1180/002646199548411

    Article  Google Scholar 

  • Haas J, Péró C (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci (Geol Rundsch) 93:297–313. https://doi.org/10.1007/s00531-004-0384-9

    Article  Google Scholar 

  • Hallsworth CR, Morton AC, Claoué-Long J, Fanning CM (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sediment Geol 137:147–185. https://doi.org/10.1016/S0037-0738(00)00153-6

    Article  Google Scholar 

  • Handy MR, Ustaszewski K, Kissling E (2014) Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int J Earth Sci (Geol Rundsch) 104:1–26. https://doi.org/10.1007/s00531-014-1060-3

    Article  Google Scholar 

  • Hanžl P, Schitter P, Finger F, Krejčí O, Buriánková K, Stránik Z (2000) Petrography, geochemistry and age of granitic pebbles from Moravian part of the Carpathian Flysch. In: Mineralogical Society of Poland—Special Papers, vol 17, pp 156–158

  • Harley SL, Kelly NM, Moller A (2007) Zircon behaviour and the thermal histories of Mountain Chains. Elements 3:25–30. https://doi.org/10.2113/gselements.3.1.25

    Article  Google Scholar 

  • Heimann A, Spry PG, Teale GS (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulfide occurrences, Colorado: a re-evaluation of gahnite composition as a guide in exploration. Can Mineral 43:601–622. https://doi.org/10.2113/gscanmin.43.2.601

    Article  Google Scholar 

  • Hnylko OM (2011a) Terrane analysis and geological evolution of the Carpathians. Visnyk Lvivskoho Derzhavnoho Universytetu, Seria “Heolohiya” 25:174–188 (Ukrainian with English summary)

    Google Scholar 

  • Hnylko OM (2011b) Geologic evolution of the Carpathians in the light of the terrane analysis. Geodinamika 2(11):64–65 (Ukrainian with English abstract)

    Google Scholar 

  • Hnylko OM, Generalova LV (2014) Tectonic-sedimentary evolution of the Fore-Marmarosh accretionary prism of the Ukrainian Carpathians. Vestnik of Saint Petersburg University, Series 7, Geology, Geography, 5–23 (Russian with English summary)

  • Hnylko S, Hnylko OM (2016) Foraminiferal stratigraphy and palaeobathymetry of Paleocene-lowermost Oligocene deposits (Vezhany and Monastyrets nappes, Ukrainian Carpathians). Geol Q 60:77–105. https://doi.org/10.7306/gq.1247

    Article  Google Scholar 

  • Hnylko OM, Hnylko SR, Generalova LV (2015) Formation of the structure of the Klippen Zones and the Interklippen Flysch of the Inner Ukrainian Carpathians—result of convergence and collision of microcontinental terranes. Vestnik of Saint Petersburg University, Series 7, Geology, Geography, 4–24 (Russian with English summary)

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin, PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53, pp 427–467

  • Hók J, Šujan M, Šipka F (2014) Tectonic division of the Western Carpathians: an overview and a new approach. AGEOS 6:135–214 (Slovak with English summary)

    Google Scholar 

  • Hraško Ľ, Határ J, Huhma H, Mäntäri I, Michalko J, Vaasjoki M (1999) U/Pb zircon dating of the Upper Cretaceous granite (Rochovce type) in the Western Carpathians. Krystalinikum 25:163–171

    Google Scholar 

  • Hubert JF (1962) A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J Sediment Petrol 32:440–450

    Google Scholar 

  • Ionescu GE (1993) Bauxite development in the North Apuseni mountains, western Romania. Cretac Res 14:669–683. https://doi.org/10.1006/cres.1993.1046

    Article  Google Scholar 

  • Janák M, Finger F, Plašienka D, Petrík I, Humer B, Méres Š, Lupták B (2002) Variscan high P-T recrystallization of Ordovician granitoids in the Veporic unit (Nízke Tatry Mountains, Western Carpathians): new petrological and geochronological data. Geolines 14:38–39

    Google Scholar 

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments: Geological Society of America, Special paper, vol 284, pp 1–19

  • Jurewicz E (2018) The Šariš Transitional Zone, revealing interactions between Pieniny Klippen Belt, Outer Carpathians and European platform. Swiss J Geosci 111:245–267. https://doi.org/10.1007/s00015-017-0297-9

    Article  Google Scholar 

  • Kelly NM, Harley SL (2005) An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol 149:57–84. https://doi.org/10.1007/S00410-004-0635-6

    Article  Google Scholar 

  • Klötzli U, Gaab G, Skiöld T (2004) Zircon typology, geochronology and whole rock Sr–Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary). Mineral Petrol 81:113–134. https://doi.org/10.1007/s00710-003-0026-0

    Article  Google Scholar 

  • Kohút M, Uher P, Putiš M, Sergeev S, Antonov A (2008) Dating of the Lower Carboniferous granitic rocks from the Western Carpathians in the light of new SHRIMP U-Pb zircon data. In: 7th annual Christmas meeting of SGS, Miner Slov, vol 40, pp 3–4

  • Kohút M, Uher P, Putiš M, Ondrejka M, Sergeev S, Larionov A, Paderin I (2009) SHRIMP U-Th-Pb zircon dating of the granitoid massifs in the Malé Karpaty Mountains (Western Carpathians): evidence of Meso-Hercynian succesive S- to I-type granitic magmatism. Geol Carpath 60:345–350. https://doi.org/10.2478/v10096-009-0026-z

    Article  Google Scholar 

  • Kohút M, Uher P, Putiš M, Broska I, Siman P, Rodionov N, Sergeev S (2010) Are there any differences in age of the two principal Hercynian (I- & S-) granite types from the Western Carpathians? A SHRIMP approach. Dating of minerals and rocks, metamorphic, magmatic and metallogenetic processes, as well as tectonic events, pp 17–18

  • Kohút M, Stein H, Uher P, Zimmermann A, Hraško L (2013) Re–Os and U-Th–Pb dating of the Rochovce granite and its mineralization (Western Carpathians, Slovakia). Geol Carpath 64:71–79. https://doi.org/10.2478/geoca-2013-0005

    Article  Google Scholar 

  • Koráb T, Nemčok J, Ďurkovič T, Marschalko R (1962) General investigation of oriented sedimentary structures in East Slovakian Flysch. Geologický sborník 13:257–274 (Slovak)

    Google Scholar 

  • Kotov AB, Salnikova EB, Kovach VP, Yakovleva SZ, Bereznaya NG, Miko O, Kráľ J (1996) U/Pb dating of zircons of postorogenic acid metavolcanics and metasubvolcanics: a record of Permian-Triassic taphrogeny of the West-Carpathian basement. Geol Carpath 47:73–79

    Google Scholar 

  • Kováč M, Plašienka D, Soták J, Vojtko R, Oszczypko N, Less G, Ćosović V, Fűgenschuh B, Králiková S (2016) Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob Planet Change 140:9–27. https://doi.org/10.1016/j.gloplacha.2016.03.007

    Article  Google Scholar 

  • Kováčik M (ed), Bóna J, Gazdačko Ľ, Kobulský J, Maglay J, Žecová K, Derco J, Zlinská A, Siráňová Z, Boorová D, Bónová K, Buček S, Kucharič Ľ, Kubeš P, Bačová N, Petro Ľ, Vaněková H (2012) Explanation to the geological map of the Nízke Beskydy Mts.—western part at scale 1: 50,000. SGIDS, Bratislava

  • Králiková S, Vojtko R, Hók J, Fügenschuh B, Kováč M (2016) Low-temperature constraints on the Alpine thermal evolution of the Western Carpathian basement rock complexes. J Struct Geol 91:144–160. https://doi.org/10.1016/j.jsg.2016.09.006

    Article  Google Scholar 

  • Krinsley DH, Doornkamp JC (2011) Atlas of quartz sand surface textures. Cambridge University Press, Cambridge

    Google Scholar 

  • Křížová L, Křížek M, Lisá L (2011) Applicability of quartz grains surface analysis to the study of the genesis of unlithified sediments (in Czech with English summary). Geografie 116:59–78

    Google Scholar 

  • Le Ribault L (1975) Application de l’exoscopie des quartz à quelques échantillons prélevés en Manche Orentale. Philos Trans R Soc Lond Ser A 279:279–288

    Google Scholar 

  • Lee JK, Tromp J (1995) Self-induced fracture generation in zircon. J Geophys Res Solid Earth 100:17753–17770. https://doi.org/10.1029/95JB01682

    Article  Google Scholar 

  • Leško B, Samuel O (1968) Geology of the Eastern-Slovakian Flysch. Veda, Bratislava

    Google Scholar 

  • Linnemann U, McNaughton NJ, Romer RL, Gemlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci (Geol Rundsch) 93:683–705. https://doi.org/10.1007/s00531-004-0413-8

    Article  Google Scholar 

  • Ludwig KR (2000) SQUID 1.00. A User’s Manual. Berkeley Geochronology Center Special Publications 2

  • Ludwig KR (2003) ISOPLOT/EX ver. 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications. 1a

  • Mahaney WC (1995) Pleistocene and Holocene glacier thickness, transport histories and dynamics inferred from SEM microtextures on quartz particles. Boreas 24:293–304. https://doi.org/10.1111/j.1502-3885.1995.tb00781.x

    Article  Google Scholar 

  • Mahaney WC (2002) Atlas of sand grain surface textures and applications. Oxford Univ. Press, Oxford

    Google Scholar 

  • Mahaney WC, Stewart A, Kalm V (2001) Quantification of SEM microtextures useful in environment discrimination. Boreas 30:165–171. https://doi.org/10.1111/j.1502-3885.2001.tb01220.x

    Article  Google Scholar 

  • Makuluni P, Kirkland CL, Barham M (2018) Zircon grain shape holds provenance information: a case study from southwestern Australia. Geol J. https://doi.org/10.1002/gj.3225

    Article  Google Scholar 

  • Margolis SV, Krinsley DH (1971) Submicroscopic frosting on eolian and subaqueous quartz sand grains. Geol Soc Am Bull 82:3395–3406. https://doi.org/10.1130/0016-7606(1971)82[3395:SFOEAS]2.0.CO;2

    Article  Google Scholar 

  • Marschalko R, Mišík M, Kamenický L (1976) Petrographie der Flysch-Konglomerate und Rekonstruktion ihrer Ursprungszonen (Paläogen der Klippenzone und der angrenzenden tektonischen Einheiten der Ostslowakei). Západné Karpaty, Séria Geológia 1:7–124

    Google Scholar 

  • Mațenco L (2017) Tectonics and exhumation of Romanian Carpathians: inferences from kinematic and thermochronological studies. In: Rădoane M, Vespremeanu-Stroe A (eds) Landform dynamics and evolution in Romania. Springer, Cham, pp 15–56

    Google Scholar 

  • Matskiv BV, Pukach BD, Vorobkanych VM, Pastukhanova SV, Hnylko OM (2010) State geological map of Ukraine at the scale of 1: 200,000. UkrSGRI, Kyiv

    Google Scholar 

  • Merten S (2011) Thermo-tectonic evolution of a convergent orogen with low topographic build-up: exhumation and kinematic patterns in the Romanian Carpathians derived from thermochronology. Ipskamp Drukkers B. V, Amsterdam

    Google Scholar 

  • Merten S, Mațenco L, Foeken JPT, Andriessen PAM (2011) Toward understanding the post-collisional evolution of an orogen influenced by convergence at adjacent plate margins: late Cretaceous-Tertiary thermotectonic history of the Apuseni Mountains. Tectonics 30(TC6008):1–28

    Google Scholar 

  • Michalik M, Budzyń B, Gehrels G (2006) Cadomian granitoid clasts derived from the Silesian Ridge (results of the study of gneiss pebbles from Gródek at the Jezioro Rożnowskie lake). Mineral Pol Spec Pap 29:168–171

    Google Scholar 

  • Mišík M, Sýkora M, Jablonský J (1991) Strihovce conglomerates and South-Magura Exotic Ridge (West Carpathians). Západné Karpaty, Séria Geológia 14:7–72 (Slovak with English summary)

    Google Scholar 

  • Moral Cardona JP, Gutiérrez Mas JM, Sánchez Béllon A, Domínguez-Bella S, Martínez López J (2005) Surface textures of heavy-mineral grains: a new contribution to provenance studies. Sediment Geol 174:223–235. https://doi.org/10.1016/j.sedgeo.2004.12.006

    Article  Google Scholar 

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol 124:3–29. https://doi.org/10.1016/S0037-0738(98)00118-3

    Article  Google Scholar 

  • Morton AC, Hallsworth CR (2007) Stability of detrital heavy minerals during burial diagenesis. Dev Sedimentol 58:215–245. https://doi.org/10.1016/S0070-4571(07)58007-6

    Article  Google Scholar 

  • Nemčok J, Koráb T, Ďurkovič T (1968) Lithological investigation of conglomerate of Magura Flysch in East Slovakia. Geologické Práce Zprávy 44–45:105–118

    Google Scholar 

  • Ondrejka M, Li XH, Vojtko R, Putiš M, Uher P, Sobocký T (2018) Permian A-type rhyolites of the Muráň Nappe, Inner Western Carpathians, Slovakia: in-situ zircon U-Pb SIMS ages and tectonic setting. Geol Carpath 69:187–198. https://doi.org/10.1515/geoca-2018-0011

    Article  Google Scholar 

  • Oszczypko N (1975) Exotic rocks in the Palaeogene of the Magura nappe between Dunajec and Poprad rivers, Carpathians, Poland. Ann Soc Geol Pol 45:403–431

    Google Scholar 

  • Oszczypko N (1992) Late Cretaceous through Paleogene evolution of Magura basin. Geol Carpath 43:333–338

    Google Scholar 

  • Oszczypko N, Salata D (2005) Provenance analyses of the Late Cretaceous-Paleocene deposits of the Magura basin (Polish Western Carpathians)—evidence from a study of the heavy minerals. Acta Geol Pol 55:237–267

    Google Scholar 

  • Oszczypko N, Oszczypko-Clowes M (2006) Evolution of the Magura Basin. In: Oszczypko N, Uchman A, Malata E (eds) Palaeotectonic evolution of the outer Carpathian and Pieniny Klippen belt basins. Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego, Kraków, pp 133–164

    Google Scholar 

  • Oszczypko N, Oszczypko-Clowes M (2009) Stages in the Magura Basin: a case study of the Polish sector (Western Carpathians). Geodin Acta 22(1–3):83–100. https://doi.org/10.3166/ga.22.83-100

    Article  Google Scholar 

  • Oszczypko N, Malata E, Bąk K, Kędzierski M, Oszczypko-Clowes M (2005) Lithostratigraphy and biostratigraphy of the upper Albian lower/middle Eocene flysch deposits in the Bystrica and Rača subunits of the Magura nappe; Western Carpathians (Beskid Wyspowy and Gorce ranges, Poland). Ann Soc Geol Pol 75:27–69

    Google Scholar 

  • Oszczypko N, Oszczypko-Clowes M, Salata D (2006) Exotic rocks of the Krynica Zone (Magura nappe) and their palaeogeographic significance. Geologia 32:21–45

    Google Scholar 

  • Oszczypko N, Ślączka A, Oszczypko-Clowes M, Olszewska B (2015) Where was the Magura Ocean? Acta Geol Pol 65:319–344. https://doi.org/10.1515/agp-2015-0014

    Article  Google Scholar 

  • Oszczypko N, Salata D, Konečný P (2016) Age and provenance of mica-schist pebbles from the Eocene conglomerates of the Tylicz and Krynica Zone (Magura Nappe, Outer Flysch Carpathians). Geol Carpath 67:260–274. https://doi.org/10.1515/geoca-2016-0017

    Article  Google Scholar 

  • Pană DI, Heaman LM, Creaser RA, Erdmer P (2002a) Pre-Alpine Crust in the Apuseni Mountains, Romania: insights from Sm-Nd and U-Pb Data. J Geol 110:341–354. https://doi.org/10.1086/339536

    Article  Google Scholar 

  • Pană D, Balintoni I, Heaman L, Creaser R (2002b) The U-Pb and Sm-Nd dating of the main lithotectonic assemblages of the East Carpathians, Romania. Geol Carpath Spec issue 53:177–180

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever S (1972) Sand and sandstone. Springer, New York

    Google Scholar 

  • Philander C, Rozendaal A (2015) Detrital zircon geochemistry and U-Pb geochronology as an indicator of provenance of the Namakwa Sands heavy mineral deposit, west coast of South Africa. Sediment Geol 328:1–16. https://doi.org/10.1016/j.sedgeo.2015.08.001

    Article  Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472. https://doi.org/10.1007/BF00344081

    Article  Google Scholar 

  • Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 107–130

    Google Scholar 

  • Plašienka D (2012) Early stages of structural evolution of the Carpathian Klippen Belt (Slovakian Pieniny sector). Miner Slov 44:1–16

    Google Scholar 

  • Plašienka D (2018) Continuity and episodicity in the early alpine tectonic evolution of the Western Carpathians: how large-scale processes are expressed by the orogenic architecture and rock record data. Tectonics 37:2029–2079. https://doi.org/10.1029/2017TC004779

    Article  Google Scholar 

  • Plašienka D, Mikuš V (2010) Geological setting of the Pieniny and Šariš sectors of the Klippen Belt between Litmanová and Drienica villages in the eastern Slovakia. Miner Slov 42:155–178 (Slovak with English summary)

    Google Scholar 

  • Plašienka D, Bučová J, Šimonová V (2019) Variable structural styles and tectonic evolution of an ancient backstop boundary: the Pieniny Klippen Belt of the Western Carpathians. Int J Earth Sci. https://doi.org/10.1007/s00531-019-01789-5

    Article  Google Scholar 

  • Poller U, Todt W (2000) U-Pb single zircon data of granitoids from the High Tatra Mountains (Slovakia): implications for the geodynamic evolution. Geol Soc Am Spec Pap 350:235–243. https://doi.org/10.1017/S0263593300007409

    Article  Google Scholar 

  • Poller U, Janák M, Kohút M, Todt W (2000) Early Variscan magmatism in the Western Carpathians: U-Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). Int J Earth Sci 89:336–349. https://doi.org/10.1007/s005310000082

    Article  Google Scholar 

  • Poller U, Uher P, Janák M, Plašienka D, Kohút M (2001) Late Cretaceous age of the Rochovce granite, Western Carpathians, constrained by U-Pb single-zircon dating in combination with cathodoluminiscence imaging. Geol Carpath 52:41–47

    Google Scholar 

  • Poller U, Uher P, Broska I, Plašienka D, Janák M (2002) First Permian-Early Triassic zircon ages for tin-bearing granites from the Gemeric unit (Western Carpathians, Slovakia): connection to the post-collisional extension of the Variscan orogen and S-type granite magmatism. Terra Nova 14:41–48. https://doi.org/10.1046/j.1365-3121.2002.00385.x

    Article  Google Scholar 

  • Pozsgai E, Jósza S, Dunkl I, Sebe K, Thamó-Bozsó E, Sajó I, Dezső J, von Eynatten H (2017) Provenance of the Upper Triassic siliciclastics of the Mecsek Mountains and Villáni Hills (Pannonian Basin, Hungary): constrains to the Early Mesozoic paleogegraphy of the Tisza Megaunit. Int J Earth Sci (Geol Rundsch) 106:2005–2024. https://doi.org/10.1007/s00531-016-1406-0

    Article  Google Scholar 

  • Pupin J-P (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Google Scholar 

  • Putiš M, Kotov AB, Uher P, Salnikova EB, Korikovsky SP (2000) Triassic age of the Hrončok pre-orogenic A-type granite related to continental rifting: a new result of U-Pb isotope dating (Western Carpathians). Geol Carpath 51:59–66

    Google Scholar 

  • Putiš M, Kotov AB, Korikovsky SP, Salnikova EB, Yakovleva SZ, Berezhnaya NG, Kovach VP, Plotkina JV (2001) U-Pb zircon ages of dioritic and trondhhjemitic rocks from a layered amphibolitic complex crosscut by granite vein (Veporic basement, Western Carpathians). Geol Carpath 52:49–60

    Google Scholar 

  • Putiš M, Sergeev S, Ondrejka M, Larionov A, Siman P, Spišiak J, Uher P, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol Carpath 59:3–18

    Google Scholar 

  • Putiš M, Ivan P, Kohút M, Spišiak J, Siman P, Radvanec M, Uher P, Sergeev S, Larionov A, Méres Š, Demko R, Ondrejka M (2009) Meta-igneous rocks of the West-Carpathian basement, Slovakia: indicators of Early Paleozoic extension and shortening events. Bull Soc Géol Fr 180:461–471. https://doi.org/10.2113/gssgfbull.180.6.461

    Article  Google Scholar 

  • Radvanec M, Konečný P, Ondrejka M, Putiš M, Uher P, Németh Z (2009) The Gemeric granites as an indicator of the crustal extension above the Late-Variscan subduction zone and during the Early Alpine riftogenesis (Western Carpathians): an interpretation from the monazite and zircon ages dated by CHIME and SHRIMP methods. Miner Slov 41:381–394 (Slovak with English summary)

    Google Scholar 

  • Rainbird RH, Hamilton MA, Young GM (2001) Detrital zircon geochronology and provenance of the Torridonian, NW Scotland. J Geol Soc 158:15–27. https://doi.org/10.1144/jgs.158.1.15

    Article  Google Scholar 

  • Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 15–24

    Google Scholar 

  • Reiser MK, Săbău G, Negulescu E, Schuster R, Tropper P, Fűgenschuh B (2019) Post-Variscan metamorphism in the Apuseni and Rodna Mountains (Romania): evidence from Sm–Nd garnet and U-Th–Pb monazite dating. Swiss J Geosci 112:101–120. https://doi.org/10.1007/s00015-018-0322-7

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138. https://doi.org/10.1016/S0009-2541(01)00355-2

    Article  Google Scholar 

  • Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps. Cathodoluminescence in geosciences. Springer, Berlin, pp 373–400

    Google Scholar 

  • Salata D, Oszczypko N (2010) Preliminary results of provenance analyses of exotic magmatic and metamorphic rock pebbles from the Eocene Flysch deposits of the Magura nappe (Krynica Facies Zone, Polish Outer Carpathians). In: Christofides G (ed) Proceedings of the XIX CBGA Congress, Thessaloniki, pp 241–248

  • Seghedi A, Popa M, Oaie G, Nicolae I (2001) The Permian system in Romania. Natura Bresciana, Annuario de Museo civico di storia naturale di Brescia 25:281–293

    Google Scholar 

  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201. https://doi.org/10.1007/s004100050478

    Article  Google Scholar 

  • Schmid SM, Bernoulli D, Fugenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183. https://doi.org/10.1007/s00015-008-1247-3

    Article  Google Scholar 

  • Stan N (1987) Upper Carboniferous and Permian volcanics from Romania. Pre-Variscan and Variscan events in the Alpine-Mediterranean Belt. Miner Slov Monograph, Alfa-Bratislava, pp 445–456

    Google Scholar 

  • Starobová M (1962) Heavy minerals of the East Slovak Magura Flysch and the inner Klippen Belt. Geologické Práce Zošit 63:47–52 (Czech)

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362. https://doi.org/10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Stoica AM, Ducea MN, Roban RD, Jianu D (2016) Origin and evolution of the South Carpathians basement (Romania): a zircon and monazite geochronologic study of its Alpine sedimentary cover. Int Geol Rev 58:510–524. https://doi.org/10.1080/00206814.2015.1092097

    Article  Google Scholar 

  • Streck MJ (2008) Mineral textures and Zoning as evidence for Open System Processes. Rev Mineral Geochem 69:595–622. https://doi.org/10.2138/rmg.2008.69.15

    Article  Google Scholar 

  • Szederkényi T (1996) Metamorphic formations and their correlation in the Hungarian part of Tisia Megaunit (Tisia composite terrane). Acta Mineral Petrogr 37:143–160

    Google Scholar 

  • Szederkényi T, Kovács S, Haas J, Nagymarosy A (2012) Geology and history of evolution of the ALCAPA mega-unit. Geology of Hungary. Springer, Berlin

    Google Scholar 

  • Szemerédi M, Varga A, Tatu M, Seghedi I, Dunkl I, Pál-Molnár E, Lukács R (2018) Permian volcanism vs. Alpine nappe stacking: petrographic and geochemical observations for regional correlation of the Permian felsic volcanic rocks, Tisza Mega-unit (Hungary and Romania). Geophysical Research Abstracts, vol 20, EGU2018–1771

  • Szemerédi M, Lukács R, Varga A, Dunkl I, Tatu M, Seghedi I, Pál-Molnár E, Harangi S (2019) Could Permian felsic volcanic rocks and granites in the Tisza Mega-unit (Pannonian Basin) be in a plutonic–volcanic connection? Implications from zircon U-Pb geochronology and whole-rock geochemistry. Geophysical Research Abstracts, vol 21, EGU2019–253

  • Teťák F (2008) Paleogene depositional systems and paleogeography of the submarine fans in the western part of the Magura Basin (Javorníky Mountains, Slovakia). Geol Carpath 59:333–344

    Google Scholar 

  • Teťák F, Pivko D, Kováčik M (2019) Depositional systems and paleogeography of Upper Cretaceous-Paleogene deep-sea flysch deposits of the Magura Basin (Western Carpathians). Palaeogeogr Palaeoclimatol Palaeoecol 533:109250. https://doi.org/10.1016/j.palaeo.2019.109250

    Article  Google Scholar 

  • Uher P (2004) Gahnite from granitic pegmatites of Tatric Unit (Slovakia). Bulletin mineralogicko-petrologického oddelení Národního Muzea (Praha) 12:202–205 (Slovak with English summary)

    Google Scholar 

  • Uher P, Broska I (1996) Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geol Carpath 47:311–322

    Google Scholar 

  • Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a Cathodoluminescence study. Contrib Mineral Petrol 106:90–99. https://doi.org/10.1007/BF00306410

    Article  Google Scholar 

  • Vavra G (1993) A guide to quantitative morphology of accessory zircon. Chem Geol 110:15–28. https://doi.org/10.1016/0009-2541(93)90245-E

    Article  Google Scholar 

  • Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358. https://doi.org/10.1007/s004100050132

    Article  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th–Pb microanalysis of amphibolite- to granulite-facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404. https://doi.org/10.1007/s004100050492

    Article  Google Scholar 

  • Vos K, Vandenberghe N, Elsen J (2014) Surface textural analysis of quartz grains by scanning electron microscopy (SEM): from sample preparation to environmental interpretation. Earth Sci Rev 128:93–104. https://doi.org/10.1016/j.earscirev.2013.10.013

    Article  Google Scholar 

  • Vozárová A, Šmelko M, Paderin I (2009) Permian single crystal U-Pb zircon age of the Rožňava Formation volcanites (Southern Gemeric Unit, Western Carpathians, Slovakia). Geol Carpath 60:439–448. https://doi.org/10.2478/v10096-009-0032-1

    Article  Google Scholar 

  • Vozárová A, Šarinová K, Larionov A, Presnyakov S, Sergeev S (2010) Late Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U-Pb (SHRIMP) data from zircons. Int J Earth Sci (Geol Rundsch) 99:17–37. https://doi.org/10.1007/s00531-009-0454-0

    Article  Google Scholar 

  • Vozárová A, Šmelko M, Paderin I, Larionov A (2012a) Permian volcanics in the Northern Gemericum and Bôrka Nappe system: U-Pb zircon dating and the implications for geodynamic evolution (Western Carpathians, Slovakia). Geol Carpath 63:191–200. https://doi.org/10.2478/v10096-012-0016-4

    Article  Google Scholar 

  • Vozárová A, Šarinová K, Rodionov N, Laurinc D, Paderin I, Sergeev S, Lepekhina E (2012b) U-Pb ages of detrital zircons from Paleozoic metasandstones of the Gelnica Terrane (Southern Gemeric Unit, Western Carpathians, Slovakia): evidence for Avalonian-Amazonian provenance. Int J Earth Sci (Geol Rundsch) 101:919–936. https://doi.org/10.1007/s00531-011-0705-8

    Article  Google Scholar 

  • Vozárová A, Laurinc D, Šarinová K, Larionov A, Presnyakov S, Rodionov N, Paderin I (2013) Pb ages of detrital zircons in relation to geodynamic evolution: paleozoic of the Northern Gemericum (Western Carpathians, Slovakia). J Sediment Res 83:915–927. https://doi.org/10.2110/jsr.2013.66

    Article  Google Scholar 

  • Vozárova A, Rodionov N, Vozár J, Lepekhina E, Šarinová K (2016) U-Pb zircon ages from Permian volcanic rocks and tonalite of the Northern Veporicum (Western Carpathians). J Geosci 61:221–237. https://doi.org/10.3190/jgeosci.215

    Article  Google Scholar 

  • Vozárová A, Rodionov N, Šarinová K, Presnyakov S (2017) New zircon ages on the Cambrian-Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance. Int J Earth Sci (Geol Rundsch) 106:2147–2170. https://doi.org/10.1007/s00531-016-1420-2

    Article  Google Scholar 

  • Vozárová A, Larionov A, Šarinová K, Vďačný M, Lepekhina E, Vozár J, Lvov P (2018) Detrital zircons from the Hronicum Carboniferous-Permian sandstones (Western Carpathians, Slovakia): depositional age and provenance. Int J Earth Sci (Geol Rundsch) 107:1539–1555. https://doi.org/10.1007/s00531-017-1556-8

    Article  Google Scholar 

  • Vozárová A, Rodionov N, Šarinová K, Lepekhina E, Vozár J, Paderin I (2019a) Detrital zircon U-Pb geochronology of Pennsylvanian-Permian sandstones from the Turnaicum and Meliaticum (Western Carpathians, Slovakia): provenance and tectonic implications. Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-019-01733-7

    Article  Google Scholar 

  • Vozárová A, Larionov A, Šarinová K, Rodionov N, Lepekhina E, Vozár J, Paderin I (2019b) Clastic wedge provenance in the Zemplinicum Carboniferous-Permian rocks using the U-Pb zircon age dating (Western Carpathians, Slovakia). Int J Earth Sci (Geol Rundsch). https://doi.org/10.1007/s00531-018-1654-3

    Article  Google Scholar 

  • Williams IS (1998) U-Th-Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35

    Google Scholar 

  • Williams IS, Cleasson S (1987) Isotopic evidence for Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II Ion microprobe zircon U-Th-Pb. Contrib Mineral Petrol 97:205–217. https://doi.org/10.1007/BF00371240

    Article  Google Scholar 

  • Yakymchuk Ch, Kirkland ChL, Clark Ch (2018) Th/U ratios in metamorphic zircon. J Metamorph Geol 36:715–737. https://doi.org/10.1111/jmg.12307

    Article  Google Scholar 

  • Zimmerman A, Stein HJ, Hannah JL, Koželj D, Bogdanov K, Berza T (2008) Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precisions Re–Os molybdenite ages. Mineralia Deposita 43:1–21. https://doi.org/10.1007/s00126-007-0149-z

    Article  Google Scholar 

  • Zoleikhaei Y, Frei D, Morton AC, Zamanzadeh M (2016) Roundness of heavy minerals (zircon and apatite) as a provenance tool for unravelling recycling: a case study from the Sefidrud and Sarbaz rivers in N and SE Iran. Sediment Geol 342:106–117. https://doi.org/10.1016/j.sedgeo.2016.06.016

    Article  Google Scholar 

  • Zulauf G, Romano SS, Doerr V, Fiala J (2007) Crete and Minoan terranes: age constraints from U–Pb dating of detrital zircons. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The Evolution of the Rheic Ocean: from Avalonian–Cadomian Active Margin to Alleghenian–Variscan Collision. Geological Society of America, Special Papers, vol 423, pp 401–411

  • Žec B, Kaličiak M, Konečný V, Lexa J, Jacko SML, Baňacký V, Karoli S, Potfaj M, Rakús M, Petro Ľ (1997) Explanations to the geological map of the Vihorlatské and Humenské vrchy Mts 1: 50,000 (Slovak with English summary). GS SR, Bratislava

  • Žec B, Gazdačko Ľ, Kováčik M, Kobulský J, Bóna J, Pristaš J, Potfaj M (2006) Geological map of the Nízke Beskydy Mts.—central part (1:50,000). Publ. Ministry of the Environment of the Slovak Republic and State Geological Institute of D. Štúr, Bratislava

Download references

Acknowledgements

The research was funded by VEGA Grant No. 1/0798/20. The authors thank Prof. Wolf-Christian Dullo and an anonymous reviewer for suggestions which helped improve this paper. The authors are also indebted to Dr. R. J. Marshall for language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Bónová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bónová, K., Pańczyk, M. & Bóna, J. Surface microtextures and new U–Pb dating of detrital zircons from the Eocene Strihovce sandstones in the Magura Nappe of the External Western Carpathians: implications for their provenance. Int J Earth Sci (Geol Rundsch) 109, 1565–1587 (2020). https://doi.org/10.1007/s00531-020-01859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01859-z

Keywords

Navigation