Skip to main content
Log in

Impact of Late Cretaceous to Neogene plate tectonics and Quaternary ice loads on supra-salt deposits at Eastern Glückstadt Graben, North German Basin

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, we investigate the impact of Late Cretaceous to Neogene plate tectonics and Pleistocene ice load on the post-Jurassic strata above the Waabs salt wall within the Eastern Glückstadt Graben by integrating reflection seismic, parametric sub-bottom profiler and well data. Previous studies showed that a collapse graben developed above the salt during several tectonic pulses. However, due to the lack of age constrains, the relationship between local salt tectonics and variations of the regional stress field caused by plate tectonics was just little constrained. Here, we introduce an inter-Cenozoic stratigraphy enabling us to infer and date three major salt tectonic phases. During the Late Cretaceous to Eocene, Africa–Iberia–Europe convergence and subsequent Pyrenean orogeny strata above the salt wall were pushed upwards and faulted. Thickness variations of the Upper Cretaceous and Eocene strata imply at least two pulses for this upward push. The second phase includes the major graben collapse in the Neogene, when the stress regime changed from a compressional to an extensional regime. The third phase is a period of locally differing tectonic reactivation likely caused by ice sheet loading and unloading during the Quaternary. Based on time-isochore and time-structure maps, we elucidate how this last glacial phase of salt tectonic movement likely formed the present day Mittelgrund shoal within the Eckernförde Bay. The spatial correlation between shallow faults and freshwater seepage implies further a causal relationship between fluid migration and faulting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al Hseinat M (2016) A seismic reflection study of the Late Cretaceous to recent structural evolution of the North German Basin and the transition zone to the Baltic Shield (Southwest Baltic Sea), Ph.D. thesis, Universität Hamburg

  • Al Hseinat M, Hübscher C (2014) Ice-load induced tectonics controlled tunnel valley evolution – instances from the southwestern Baltic Sea. Quat Sci Rev 97:121–135

    Google Scholar 

  • Al Hseinat M, Hübscher C (2017) Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea. Tectonophysics 708:28–55

    Google Scholar 

  • Al Hseinat M, Hübscher C, Lang J, Lüdmann T, Ott I, Polom U (2016) Triassic to recent tectonic evolution of a crestal collapse graben above a salt-cored anticline in the Glückstadt Graben/North German Basin. Tectonophysics 680:50–66

    Google Scholar 

  • Atzler R (1995) The structure of Pleistocene sediments in Kiel Bay and adjacent areas from reflection seismic. Berichte Rep 70:116

    Google Scholar 

  • Atzler R (1997) Die pleistozänen Entwässerungsrinnen in der Kieler Bucht. Meyniana 49:13–30

    Google Scholar 

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Schweizerbart Science Publishers, Berlin

    Google Scholar 

  • Baykulov M, Brink H-J, Gajewski D, Yoon M-K (2009) Revisiting the structural setting of the Glueckstadt Graben salt stock family, North German Basin. Tectonophysics 470(1–2):162–172

    Google Scholar 

  • Brandes C, Polom U, Winsemann J (2011) Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Res 23(1):53–64

    Google Scholar 

  • Cartwright J (1990) The structural evolution of the Ringkøbing-Fyn High Tectonic Evolution of the North Sea Rifts. Clarendon Press, Oxford, pp 200–216

    Google Scholar 

  • Clausen O, Huuse M (1999) Topography of the Top Chalk surface on-and offshore Denmark. Mar Pet Geol 16(7):677–691

    Google Scholar 

  • Cocks LRM, Torsvik TH (2005) Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth Sci Rev 72(1–2):39–66

    Google Scholar 

  • Cocks LRM, Mckerrow WS, Van Staal CR (1997) The margins of Avalonia. Geol Mag 134(5):627–636

    Google Scholar 

  • Dondurur D (2018) Chapter 2—marine seismic data acquisition, in acquisition and processing of marine seismic data, edited by D. Dondurur. Elsevier, Amsterdam, pp 37–169

  • Edgerton H, Seibold E, Vollbrecht K, Werner F (1966) Morphologische Untersuchungen am Mittelgrund (Eckernförde Bucht, westliche Ostsee). Meyniana 16:37–50

    Google Scholar 

  • Ehlers J, Grube A, Stephan HJ, Wansa S (2011) Pleistocene glaciations of North Germany—new results, in developments in quaternary sciences, vol 15. Elsevier, Amsterdam, pp 149–162

  • Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8(2):158–165

    Google Scholar 

  • Feldens P, Schwarzer K (2012) The Ancylus Lake stage of the Baltic Sea in Fehmarn Belt: Indications of a new threshold? Cont Shelf Res 35:43–52

    Google Scholar 

  • Flügge J, Rübel A (2010) Grundsatzfragen Hydrogeologie: Workshop der GRS in Zusammenarbeit mit dem PTKA-WTE. https://www.grs.de/content/grs-264-grundsatzfragen-hydrogeologie-workshop. Accessed 22 Nov 2018

  • Frischbutter A, Schwab G (2001) Recent vertical movements (map 4): Neogeodynamica Baltica IGCP-Project 346. Brandengurgische Geowissenschaftliche Beiträge 1:27–31

    Google Scholar 

  • Geyer D (1967) Eigenschwingung und Erneuerung des Wassers in der Eckernförder Bucht unter besonderer Berücksichtigung der Sturmlage vom 5–6. Dezember 1951, Kieler Meeresforsch. 21, 3354

  • Grassmann S, Cramer B, Delisle G, Messner J, Winsemann J (2005) Geological history and petroleum system of the Mittelplate oil field, Northern Germany. Int J Earth Sci 94(5):979–989

    Google Scholar 

  • Gutiérrez F (2004) Origin of the salt valleys in the Canyonlands section of the Colorado Plateau: Evaporite-dissolution collapse versus tectonic subsidence. Geomorphology 57(3):423–435

    Google Scholar 

  • Hansen MB, Lykke-Andersen H, Dehghani A, Gajewski D, Hübscher C, Olesen M, Reicherter K (2005) The Mesozoic–Cenozoic structural framework of the Bay of Kiel area, western Baltic Sea. Int J Earth Sci 94(5–6):1070–1082

    Google Scholar 

  • Hansen MB, Scheck-Wenderoth M, Hübscher C, Lykke-Andersen H, Dehghani A, Hell B, Gajewski D (2007) Basin evolution of the northern part of the Northeast German Basin—insights from a 3D structural model. Tectonophysics 437(1):1–16

    Google Scholar 

  • Hübscher C, Gohl K (2014) Reflection/Refraction seismology. Encyclopedia of Marine Geoscience, Springer, Berlin, Heidelberg

    Google Scholar 

  • Hübscher C, Hansen M, Triñanes S, Lykke-Andersen H, Gajewski D (2010) Structure and evolution of the Northeastern German Basin and its transition onto the Baltic Shield. Mar Pet Geol 27(4):923–938

    Google Scholar 

  • Hinsch W (1979) Rinnen an der Basis des glaziären Pleistozäns in Schleswig—Holstein. E&G Quat Sci J 29(1). https://doi.org/10.23689/fidgeo-1115

  • Houmark-Nielsen M (2011) Pleistocene glaciations in Denmark: a closer look at chronology, ice dynamics and landforms, in Developments in Quaternary Sciences, vol 15. Elsevier, Amsterdam, pp 47–58

  • Jensen JB, Kuijpers A, Bennike O, Laier T, Werner F (2002) New geological aspects for freshwater seepage and formation in Eckernförde Bay, western Baltic. Cont Shelf Res 22(15):2159–2173

    Google Scholar 

  • Kaiser A, Reicherter K, Hübscher C, Gajewski D (2005) Variation of the present-day stress field within the North German Basin—insights from thin shell FE modeling based on residual GPS velocities. Tectonophysics 397(1–2):55–72

    Google Scholar 

  • Khandriche A, Werner F (1996) Freshwater induced pockmarks in Bay of Eckernfoerde, western Baltic. Oceanogr Lit Rev 43(2):140

    Google Scholar 

  • Kley J (2018) Timing and spatial patterns of Cretaceous and Cenozoic inversion in the Southern Permian Basin. Geol Soc Lond Spec Publ 469(1):19–31

    Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36(11):839

    Google Scholar 

  • Kossow D, Krawczyk CM (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Mar Pet Geol 19(5):601–618

    Google Scholar 

  • Krawczyk C, Eilts F, Lassen A, Thybo H (2002) Seismic evidence of Caledonian deformed crust and uppermost mantle structures in the northern part of the Trans-European Suture Zone, SW Baltic Sea. Tectonophysics 360(1):215–244

    Google Scholar 

  • Krawczyk CM, Polom U, Trabs S, Dahm T (2012) Sinkholes in the city of Hamburg—New urban shear-wave reflection seismic system enables high-resolution imaging of subrosion structures. J Appl Geophys 78:133–143

    Google Scholar 

  • Laier T, Jensen JB (2007) Shallow gas depth-contour map of the Skagerrak-western Baltic Sea region. Geo Mar Lett 27(2):127–141

    Google Scholar 

  • Landesportal SH (2018a). Landwitschafts- und Umweltatlas, https://www.umweltdaten.landsh.de/atlas/script/index.php. Accessed 22 Nov 2018

  • Landesportal SH (2018b) Grundwasserleiter und Grundwasserkörper. https://www.schleswig-holstein.de/DE/Fachinhalte/G/grundwasser/grundwasserleiterGrundwasserkoerper.html. Accessed 22 Nov 2018

  • Lang J, Hampel A, Brandes C, Winsemann J (2014) Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes. Quat Sci Rev 101:217–233

    Google Scholar 

  • Lehne RJ, Sirocko F (2010) Recent vertical crustal movements and resulting surface deformation within the North German Basin (Schleswig-Holstein) derived by GIS-based analysis of repeated precise leveling data. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 161(2):175–188

    Google Scholar 

  • Lott G, Wong T, Dusar M, Andsbjerg J, Mönnig E, Feldman-Olszewska A, Verreussel R (2010) Jurassic. In: Doornenbal J, Stevenson A (eds) Petroleum geological Atlas of the Southern Permian Basin area. EAGE Publications b.v., Houten, pp 175–193

    Google Scholar 

  • Magri F, Bayer U, Pekdeger A, Otto R, Thomsen C, Maiwald U (2009) Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics 470(1):183–194

    Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2005) The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics 397(1):113–126

    Google Scholar 

  • Maystrenko Y, Bayer U, Brink HJ, Littke R (2008) The Central European Basin System—an overview. Dynamics of Complex Intracontinental Basins. Springer, New York, pp 16–34

    Google Scholar 

  • Maystrenko Y, Bayer U, Scheck-Wenderoth M (2017) 3D Structural Model of the Glückstadt Graben, NW Germany, (Scientific Technical Report-Data; 11/08), Deutsches GeoForschungsZentrum GFZ, Potsdam, version 2. https://gfzpublic.gfz-potsdam.de/rest/items/item_2600929_7/component/file_2626897/content

  • Niedermeyer RO, Lampe R, Janke W, Schwarzer K, Duphorn K, Kliewe H, Werner F (2011) Die deutsche Ostseeküste, Schweizerbart’sche Verlagsbuchhandlung. https://www.schweizerbart.de/publications/detail/isbn/9783443150914/Bd_105_Sammlung_geol_Fuhrer_Die_deuts

  • Orsi TH, Werner F, Milkert D, Anderson AL, Bryant WR (1996) Environmental overview of Eckernförde Bay, northern Germany. Geo Mar Lett 16(3):140–147

    Google Scholar 

  • Peryt TM, Geluk M, Mathiesen A, Paul J, Smith K (2010) Zechstein, in Petroleum Geological Atlas of the Southern Permian Basin Area. In: Doornenbal J, Stevenson A (eds). EAGE, pp 123–147

  • Pharaoh T (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314(1):17–41

    Google Scholar 

  • Pharaoh TC, Dusar M, Geluk MC, Kockel F, Krawczyk CM, Krzywiec P, Scheck-Wenderoth M, Thybo H, Vejbæk OV, Van Wees JD (2010) Tectonic evolution. In: Doornenbal J, Stevenson A (eds) Petroleum geological Atlas of the Southern Permian Basin area. EAGE Publications b.v., Houten, pp 25–57

    Google Scholar 

  • Pharaoh TC, England RW, Verniers J, Zelazniewicz A (1997) Introduction: geological and geophysical studies in the Trans-European Suture Zone. Geol Mag 134(5):585–590

    Google Scholar 

  • Piotrowski JA (1997) Subglacial hydrology in north-western Germany during the last glaciation: groundwater flow, tunnel valleys and hydrological cycles. Quat Sci Rev 16(2):169–185

    Google Scholar 

  • Piotrowski JA, Tulaczyk S (1999) Subglacial conditions under the last ice sheet in northwest Germany: ice-bed separation and enhanced basal sliding? Quat Sci Rev 18(6):737–751

    Google Scholar 

  • Pisarska-Jamrozy M, Belzyt S, Börner A, Hoffmann G, Hüneke H, Kenzler M, Obst K, Rother H, van Loon AT (2018) Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics 745:338–348

    Google Scholar 

  • Richardson MD, Briggs KB (1996) In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: implications for high-frequency acoustic propagation and scattering. Geo Mar Lett 16(3):196–203

    Google Scholar 

  • Richardson MD, Bryant WR (1996) Benthic boundary layer processes in coastal environments: an introduction. Geo Mar Lett 16(3):133–139

    Google Scholar 

  • Ruck KW (1971) Baugeologie der Lockergesteine im Nord-und Ostseeraum, in Grundbau-Taschenbuch, Bd. I, Ergänzungsband. Ernst & Sohn, Berlin, pp 161–217

  • Schlüter M, Sauter EJ, Andersen CE, Dahlgaard H, Dando PR (2004) Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol Oceanogr 49(1):157–167

    Google Scholar 

  • Schüler F (1952) Untersuchungen über die Mächtigkeit von Schlickschichten mit Hilfe des Echographen. Deutsche Hydrogr Zeitschrift 5(5–6):220–231

    Google Scholar 

  • Sirocko F, Reicherter K, Lehne R, Hübscher C, Winsemann J, Stackebrandt W (2008) Glaciation, salt and the present landscape. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European Basin system. Springer, Berlin, pp 233–245

    Google Scholar 

  • Stackebrandt W (2004) Zur Neotektonik in Norddeutschland. Zeitschrift für geologische Wissenschaften 32(2/4):85

    Google Scholar 

  • Stackebrandt W, Ludwig A, Ostaficzuk S (2001) Base of Quaternary deposits of the Baltic Sea depression and adjacent areas. Brandengurgische Geowissenschaftliche Beiträge 1(2001):13–19

    Google Scholar 

  • Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat Sci Rev 19(14):1367–1389

    Google Scholar 

  • Underhill JR (1998) Jurassic. In: Glennie W (ed) Petroleum geology of the North Sea: basic concepts and recent advances. Blackwell Science Limited, London, pp 245–293. https://doi.org/10.1002/9781444313413.ch8

    Chapter  Google Scholar 

  • Vendeville B, Jackson M (1992) The fall of diapirs during thin-skinned extension. Mar Pet Geol 9(4):354–371

    Google Scholar 

  • Vendeville BC, Nilsen KT (1995) Episodic growth of salt diapirs driven by horizontal shortening. In: Travis CJ, Harrison H, Hudec MR, Vendeville BC, Peel FJ, Perkins BF (eds) Salt, sediment and hydrocarbons. Gulf coast section society of exploration paleontologists and mineralogists foundation 16th annual research conference, pp 285–295

  • Verschuur D (2006) Seismic Multiple Removal Techniques: Past, Present and Future, Education tour series. EAGE Publications, Houten

    Google Scholar 

  • Warren J et al (2008) Salt dynamics, in dynamics of Complex Intracontinental Basins. Springer, New York, pp 248–344

    Google Scholar 

  • Warsitzka M, Jähne-Klingberg F, Kley J, Kukowski N (2018) The timing of salt structure growth in the Southern Permian Basin (Central Europe) and implications for basin dynamics. Basin Res 31(2):337–360. https://doi.org/10.1111/bre.12323

    Article  Google Scholar 

  • Wever T, Abegg F, Fiedler H, Fechner G, Stender I (1998) Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Cont Shelf Res 18(14):1715–1739

    Google Scholar 

  • Wilkens RH, Richardson MD (1998) The influence of gas bubbles on sediment acoustic properties: in situ, laboratory, and theoretical results from Eckernförde Bay, Baltic sea. Cont Shelf Res 18:1859–1892

    Google Scholar 

  • Whiticar MJ, Werner F (1981) Pockmarks: submarine vents of natural gas or freshwater seeps? Geo Mar Lett 1(3):193–199

    Google Scholar 

Download references

Acknowledgements

We thank Editor Prof. Wolf-Christian Dullo, reviewer Dr. Hanno Keil and another anonymous reviewer for their fruitful comments, thoughts and help in improving the manuscript. The data are part of the NeoBaltic data base. This project was funded by the German Research Foundation DFG, grants no. HU698/7 (part of the Special Research Project 1135) and HU698/21. IHS's, Schlumberger and ESRI's are thanked for providing the KINGDOM, VISTA Desktop Seismic Data Processing and the ArcMap software under Academic User License Agreements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Huster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huster, H., Hübscher, C. & Seidel, E. Impact of Late Cretaceous to Neogene plate tectonics and Quaternary ice loads on supra-salt deposits at Eastern Glückstadt Graben, North German Basin. Int J Earth Sci (Geol Rundsch) 109, 1029–1050 (2020). https://doi.org/10.1007/s00531-020-01850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01850-8

Keywords

Navigation