Skip to main content

Advertisement

Log in

Late Miocene intensification of continentality in the Black Sea region

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Black Sea basin is the sink for some of the largest European rivers and has acted as such, since it was part of the Eastern Paratethys. The late Miocene-to-Pliocene sedimentary record of the Black Sea documents several phases of strongly evaporitic conditions associated with extreme changes in regional hydrology. Here, we present the first combined record of continental temperature, soil type, and biomass burning in the circum–Black Sea region from the late Miocene to the transition into Pliocene (~ 10.0 to 5.0 Ma). We use branched glycerol dialkyl glycerol tetraethers (brGDGT) to reconstruct mean annual air temperature (MAT) and soil pH within the catchment of the Black Sea basin and complement these data with evidence from charcoal morphology as a proxy for burned biomass. The brGDGT data reveal generally decreasing temperatures and acidic soils between ~ 10 and 8.5 Ma, overlapping with increase in herbaceous cover in the Black Sea region. The Pontian flooding at 6.12 Ma is characterized by large quantities of organic debris and charcoal fragments in the basin and is followed by cooling starting at 5.97 Ma, event that is superimposed on the TG 20 and TG 22 glacial peaks (at 5.8 Ma). Between 5.8 and 5.0 Ma, the brGDGTs seem to be primarily derived from a cold steppe environment. Enhanced fire activity coinciding with generally cooler temperatures and a higher proportion of herbaceous plants are indicative of increased continentality between 5.8 and 5.0 Ma in the Black Sea region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archibald S et al (2018) Biological and geophysical feedbacks with fire in the Earth system Environ Res Lett 13(3):033003. https://doi.org/10.1088/1748-9326/aa9ead

    Article  Google Scholar 

  • Atlas of the Biosphere (2020) Climate Research Unit, University of East Anglia, https://nelson.wisc.edu/sage/data-and-models/atlas/maps. Accessed 31 Jan 2020

  • Böhme M, Ilg A, Winklhofer M (2008) Late Miocene “washhouse” climate in Europe. Earth Planet Sci Lett 275:393–401

    Google Scholar 

  • Böhme M, Winklhofer M, Ilg A (2011) Miocene precipitation in Europe: temporal trends and spatial gradients. Palaeogeogr Palaeoclimatol Palaeoecol 304:212–218

    Google Scholar 

  • Breckle SW (2002) Walter’s vegetation of the Earth. In: The ecological systems of the geo-biosphere, 4th edn. Springer, Berlin

  • Courtney-Mustaphi CJ, Pisaric MF (2014) A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Prog Phys Geogr 38:734–754

    Google Scholar 

  • Daniau AL, Sánchez Goñi MF, Martinez P, Urrego DH, Bout-Roumazeilles V, Desprat S, Marlon JR (2013) Orbital-scale climate forcing of grassland burning in southern Africa. Proc Natl Acad Sci USA 110:5069–5073

    Google Scholar 

  • De Boer B, Van de Wal RSW, Bintanja R, Lourens LJ, Tuenter E (2010) Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Ann Glaciol 51:23–33

    Google Scholar 

  • De Jonge C, Hopmans EC, Zell CI, Kim J-H, Schouten S, Sinninghe Damsté JS (2014) Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim Cosmochim Acta 141:97–112

    Google Scholar 

  • de Leeuw A, Morton A, van Baak CGC, Vincent SJ (2018) Timing of arrival of the Danube to the Black Sea: provenance of sediments from DSDP site 380/380A. Terra Nova 30:114–124

    Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–248

    Google Scholar 

  • Dong L, Li QY, Li L, Zhang CL (2015) Glacial-interglacial contrast in MBT/CBT proxies in the South China Sea: Implications for marine production of branched GDGTs and continental teleconnection. Org Geochem 79:74–82

    Google Scholar 

  • Enache MD, Cumming BF (2006) Tracking recorded fires using charcoal morphology from the sedimentary sequence of Prosser Lake, British Columbia (Canada). Quat Res 65:282–292

    Google Scholar 

  • Eronen JT, Ataabadi MM, Micheels A, Karme A, Bernor RL, Fortelius M (2009) Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Prod Acad Sci USA 106:11867–11871

    Google Scholar 

  • Feurdean A, Vasiliev I (2019) The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region). Sci Rep 9(1):1–7

    Google Scholar 

  • Feurdean A, Veski S, Florescu G, Vanniere B, Pfeiffer M, O'Hara RB, Stivrins N, Amon L, Heinsalu A, Vassiljev J, Hickler T (2017) Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). Quat Sci Rev 169:378–390

    Google Scholar 

  • Freymond CV, Peterse F, Fischer LV, Filip F, Giosan L, Eglinton TI (2017) Branched GDGT signals in fluvial sediments of the Danube River basin: method comparison and longitudinal evolution. Org Geochem 103:88–96

    Google Scholar 

  • Freymond CV, Kündig N, Stark C, Peterse F, Buggle B, Lupker M, Plötze M, Blattmann TM, Filip F, Giosan L, Eglinton TI (2018) Evolution of biomolecular loadings along a major river system. Geochim Cosmochim Acta 223:389–404

    Google Scholar 

  • Golovina LA, Radionova EP, van Baak CGC, Krijgsman W, Palcu DV (2019) A late Maeotian age (6.7–6.3 Ma) for the enigmatic “Pebbly Breccia” unit in DSDP Hole 380A of the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol 533:109269. https://doi.org/10.1016/j.palaeo.2019.109269

    Article  Google Scholar 

  • Grothe A (2016) The Messinian salinity crisis: a Paratehtyan perspective. PhD Thesis, Utrecht University

  • Grothe A, Sangiorgi F, Mulders YR, Vasiliev I, Reichart G-J, Brinkhuis H, Stoica M, Krijgsman W (2014) Black Sea desiccation during the Messinian salinity crisis: fact or fiction? Geology 42:563–566. https://doi.org/10.1130/G35503.1

    Article  Google Scholar 

  • Herbert TD, Lawrence KT, Tzanova A, Cleaveland-Peterson L, Gabalero-Gill R, Kelly KS (2016) Late Miocene global cooling and the rise of modern ecosystems. Nat Geosci 9:843–847

    Google Scholar 

  • Higuera PE, Chipman ML, Barnes JL, Urban MA, Hu FS (2011) Variability of tundra fire regimes in Arctic Alaska: millennial-scale patterns and ecological implications. Ecol Appl 21:3211–3226. https://doi.org/10.1890/11-0387.1

    Article  Google Scholar 

  • Hilgen FJ, Kuiper KF, Krijgsman W, Snel E, Van der Laan E (2007) Astronomical tuning as the basis for high resolution chronostratigraphy: the intricate history of the Messinian salinity crisis. Stratigraphy 4:231–238

    Google Scholar 

  • Hopmans EC, Schouten S, Pancost RD, van der Meer MJT, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments using high performance liquid chromatography/atmospheric pressure ionization mass spectrometry. Rapid Commun Mass Spectr 14:585–589

    Google Scholar 

  • Hsü KJ, Giovanoli F (1979) Messinian event in the Black Sea. Palaeogeogr Palaeoclimatol Palaeoecol 29:75–93

    Google Scholar 

  • Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041

    Google Scholar 

  • Huguet A, Fosse C, Laggoun-Défarge F, Delarue F, Derenne S (2013) Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland. Geochim Cosmochim Acta 105:294–315

    Google Scholar 

  • Inglis GN, Collinson ME, Riegel W, Wilde V, Farnsworth A, Lunt DJ, Valdes P, Robson BE, Scott AC, Lenz OK, Naafs BA, Pancost RD (2017) Mid-latitude continental temperatures through the early Eocene in western Europe. Earth Planet Sci Lett 460:86–96

    Google Scholar 

  • Ivanov D, Utescher T, Mosbrugger V, Syabryaj S, Djordjević-Milutinović D, Molchanoff S (2011) Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeogr Palaeoclimatol Palaeoecol 304:262–275

    Google Scholar 

  • Jensen K, Lynch E, Calcote R, Hotchkiss SC (2007) Interpretation of charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: do different plant fuel sources produce distinctive charcoal morphotypes? Holocene 17:907–915

    Google Scholar 

  • Kojumdgieva E (1979) Critical notes on the stratigraphy of Black Sea boreholes (Deep Sea Drilling Project, Leg 42B). Geologica Balcanica 9:107–110

    Google Scholar 

  • Korotkevich EL (1989) Zavershayuschie etapy razvitiya gipparionovoi fauny Vostochnoi vropy. In: Yanshyn AL (ed) Chetvertichyi period, Paleontologiya i arkheologiya. Stiintsa, Kishinev, pp 32–37 (in Russian)

    Google Scholar 

  • Koufos GD (2006) Palaeoecology and chronology of the Vallesian (late Miocene) in the Eastern Mediterranean region. Palaeogeog Palaeoclimatol Palaeoecol 234:127–145

    Google Scholar 

  • Krijgsman W, Stoica M, Vasiliev I, Popov VV (2010) Rise and fall of the Paratethys Sea during the Messinian salinity crisis. Earth Planet Sci Lett 290:183–191

    Google Scholar 

  • Liu XL, Zhu C, Wakeham SG, Hinrichs KU (2014) In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Mar Chem 166:1–8

    Google Scholar 

  • Lungu A (2008) Le developpement de la faune de Hipparion dans le Sarmatien sur le territoire de la République de Moldova. Acta Palaeontol Romaniae 6:181–186

    Google Scholar 

  • Meijers MJM, Peynircioglu A, Cosca MA, Brocard GY, Whitney DL, Langereis C, Mulch A (2018) Climate stability in Central Anatolia during the Messinian salinity crisis. Paleogeogr Paleoclimatol Paleoecol 498:53–67

    Google Scholar 

  • Miller DR, Habicht MH, Keisling BA, Castañeda IS, Bradley RS (2018) A 900-year New England temperature reconstruction from in situseasonally produced branched glycerol dialkyl glyceroltetraethers (brGDGTs). Climate Past 14:1653–1667

    Google Scholar 

  • Naafs BDA, Inglis GN, Zheng Y, Amesbury MJ, Biester H, Bindler R et al (2017) Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochim Cosmochim Acta 208:285–301

    Google Scholar 

  • Pausas JG, Paula S (2012) Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems. Glob Ecol Biogeogr 21:1074–1082. https://doi.org/10.1111/j.1466-8238.2012.00769.x

    Article  Google Scholar 

  • Palcu DV, Vasiliev I, Stoica M, Krijgsman W (2019) The end of the Great Khersonian Drying of Eurasia: magnetostratigraphic dating of the Maeotian transgression in the Eastern Paratethys. Basin Res 31:33–58

    Google Scholar 

  • Peterse F, van der Meer J, Schouten S, Weijers JWH, Fierer N, Jackson RB, Kim J-H, Sinninghe Damsté JS (2012) Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta 96:215–229

    Google Scholar 

  • Popescu S-M (2006) Late Miocene and early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeogr Palaeoclimatol Palaeoecol 238:64–77. https://doi.org/10.1016/j.palaeo.2006.03.018

    Article  Google Scholar 

  • Popov SV et al (2006) Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 238:91–106

    Google Scholar 

  • Popov SV, Antipov MP, Zastrozhnov AS, Kurina EE, Pinchuk TN (2010) Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr Geol Correl 18:200–224

    Google Scholar 

  • Ross D, Stoffers P, Trimonis ES (1978a) Black Sea Sedimentary. Framework 42:359–372. https://doi.org/10.2973/dsdp.proc.42-2.106.1978

    Article  Google Scholar 

  • Ross DA, Neprochnov YP, Hsü KJ, Stoffers P, Supko P, Trimonis ES, Percival SF, Erickson AJ, Degens ET, Hunt JM, Manheim FT, Senalp M, Traverse A, (1978) Initial reports of the Deep Sea Drilling Project. vol 42, Part 2 U.S. Government Printing Office, Washington

  • Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, Manzi V, Sierro FJ, Bertini A, Camerlenghi A, De Lange G, Govers R, Hilgen FJ, Hübscher C, Meijer PT, Stoica M (2014) The Messinian salinity crisis: past and future of a great challenge for marine sciences. Mar Geol 352:25–58

    Google Scholar 

  • Sanchi L, Menot G, Bard E (2014) Insights into continental temperatures in the northwestern Black Sea area during the Last Glacial period using branched tetraether lipids. Quat Sci Rev 84:98–108

    Google Scholar 

  • Sanchi L, Menot G, Bard E (2015) Environmental controls on paleo-pH at mid latitudes: a case study from Central and Eastern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 417:458–466

    Google Scholar 

  • Schrader H-J (1978) Quaternary through Neogene history of the Black Sea, deduced from the paleoecology of diatoms, silicoflagellates, ebridians, and chrysomonads. In: Ross DA, Neprochnov YP (eds) Initial reports of the Deep Sea Drilling Project, vol 42, Part 2. U.S. Government Printing Office, Washington

  • Sinninghe Damsté JS, Ossebaar J, Abbas B, Schouten S, Verschuren D (2009) Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim Cosmochim Acta 73:4232–4249

    Google Scholar 

  • Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU, Overmann J, Dedysh SN (2011) 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of acidobacteria subdivisions 1 and 3. Appl Environ Microb 77:4147–4154. https://doi.org/10.1128/AEM.00466-11

    Article  Google Scholar 

  • Syabryaj S, Utescher T, Molchanoff S, Bruch AA (2007) Vegetation and palaeoclimate in the Miocene of Ukraine. Palaeogeogr Palaeoclimatol Palaeoecol 253:153–168

    Google Scholar 

  • Tari G, Fallah M, Kosi W, Floodpage J, Baur J, Bati Z, Sipahioğlu NÖÖ (2015) Is the impact of the Messinian salinity crisis in the Black Sea comparable to that of the Mediterranean? Mar Pet Geol 66:135–148. https://doi.org/10.1016/j.marpetgeo.2015.03.021

    Article  Google Scholar 

  • Tierney J, Russell JM (2009) Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Org Geochem 40(9):1032–1036

    Google Scholar 

  • USDA PLANTS Database (2018) PLANTS Database Advanced Search using minimum and maximum pH. https://plants.usda.gov. Accessed 2 Jan 2020

  • Van Baak CGC, Radionova EP, Golovina LA, Raffi I, Kuiper KF, Vasiliev I, Krijgsman W (2015) Messinian events in the Black Sea. Terra Nova 27:433–441. https://doi.org/10.1111/ter.12177

    Article  Google Scholar 

  • Van Baak CGC, Vasiliev I, Palcu DV, Dekkers MJ, Krijgsman W (2016) A Greigite-based magnetostratigraphic time frame for the late Miocene to recent DSDP leg 42B cores from the Black Sea. Front Earth Sci 4:60. https://doi.org/10.3389/feart.2016.00060

    Article  Google Scholar 

  • Van Baak CGC, Krijgsman W, Magyar I, Sztanó O, Golovina L, Grothe A, Hoyle T, Mandic O, Patina I, Popov S, Radionova E, Stoica M, Vasiliev I (2017) Paratethys response to the Messinian salinity crisis. Earth Sci Rev 172:193–223. https://doi.org/10.1016/j.earscirev.2017.07.015

    Article  Google Scholar 

  • Vasiliev I, Krijgsman W, Langereis CG, Panaiotu CE, Matenco L, Bertott G (2004) Towards an astrochronological framework for the eastern Paratethys Mio-Pliocene sedimentary sequences of the Focsani basin (Romania). Earth Planet Sci Lett 227:231–247

    Google Scholar 

  • Vasiliev I, Reichart GJ, Krijgsman W (2013) Impact of the Messinian salinity crisis on Black Sea hydrology—insights from hydrogen isotopes on molecular biomarkers. Earth Planet Sci Lett 362:272–282

    Google Scholar 

  • Vasiliev I, Reichart G-J, Grothe A, Sinninghe Damsté JS, Krijgsman W, Sangiorgi F, Weijers JWH, van Roij L (2015) Recurrent phases of drought in the upper Miocene of the Black Sea region. Palaeogeogr Palaeoclimatol Palaeoecol 423:18–31

    Google Scholar 

  • Vasiliev I, Mezger EM, Lugli S, Reichart GJ, Manzi V, Roveri M (2017) How dry was the Mediterranean during the Messinian salinity crisis? Palaeogeogr Palaeoclimatol Palaeoecol 471:120–133

    Google Scholar 

  • Vasiliev I, Reichart GJ, Krijgsman W, Mulch A (2019a) Black Sea rivers capture drastic change in catchment-wide mean annual temperature and soil pH during the Miocene-to-Pliocene transition. Glob Planet Change 172:428–439

    Google Scholar 

  • Vasiliev I, Karakitsios V, Bouloubassi I, Agiadi K, Kontakiotis G, Antonarakou A, Triantaphyllou M, Gogou A, Kafousia N, de Rafélis M, Zarkogiannis S, Kaczmar F, Parinos C, Pasadakis N (2019b) Large sea surface temperature, salinity, and productivity-preservation changes preceding the onset of the Messinian Salinity Crisis in the eastern Mediterranean Sea. Paleoceanogra Paleoclimatol 34(2):182–202

    Google Scholar 

  • Weijers JWH, Schouten S, van den Donker JC, Hopmans EC, Sinninghe Damsté JS (2007a) Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta 71:703–713

    Google Scholar 

  • Weijers JWH, Schouten S, Sluijs A, Brinkhuis H, Sinninghe Damsté JS (2007b) Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth Planet Sci Lett 261:230–238

    Google Scholar 

  • Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, pp 75–97. https://doi.org/10.1007/0-306-47668-1

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. https://doi.org/10.1126/science.1059412

    Article  Google Scholar 

Download references

Acknowledgements

Staff at the IODP Bremen Core Repository is thanked for their help during core sampling. AF acknowledges support by the German Research Foundation [DFG FE-1094/4-1]. This study used samples provided by the Deep Sea Drilling Project, which was sponsored by the U.S. National Science Foundation and participating countries under management of Joint Oceanographic Institutions. IV thanks J. Weijers for training in interpreting GDGT peaks and W. Krijgsman for numerous inspiring discussions on Black Sea environmental change. We thank the anonymous reviewer and to L. Matenco for the comments and suggestions that significantly improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliana Vasiliev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, I., Feurdean, A., Reichart, GJ. et al. Late Miocene intensification of continentality in the Black Sea region. Int J Earth Sci (Geol Rundsch) 109, 831–846 (2020). https://doi.org/10.1007/s00531-020-01832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01832-w

Keywords

Navigation