Skip to main content
Log in

Effects of stress paths on triaxial compression mechanical properties of QH-E lunar soil simulant studied by DEM simulation

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this paper, three different stress paths [conventional triaxial compression (CTC), constant principal stress triaxial compression (PTC), and hydrostatic compression (HC)] are chosen to investigate the effects of stress paths on the mechanical properties of QH-E lunar soil simulant by using discrete element method simulation. The results show that under HC path, only volumetric change occurs, the volumetric strain increases quickly first, and then increases slowly and becomes more and more flat as the confining stress increased gradually to the conventional level. Under CTC and PTC paths, QH-E lunar soil simulant generates strain softening and shear dilatancy, the shear dilatancy parameters (linear shear dilatancy, residual shear dilatancy and residual shear dilatancy point) with confining stress show a good linear relationship, the value of linear shear dilatancy is larger than that of residual shear dilatancy, and the slope of regression line under CTC path is higher than that of PTC path, which indicates that the increase speed of volumetric strain under CTC path is faster than that of PTC path. Under the same confining stress, the peak deviatoric stress under CTC path is larger than that of PTC path, and a higher confining stress leads to a greater difference between CTC and PTC paths obtained the peak deviatoric stress. The results provide important information for understanding the stress path-dependent mechanical properties of lunar soil simulant.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carrier, W.D., Olhoeft, G.R., Mendell, W.: Physical Properties of the Lunar Surface: Lunar Source Book, pp. 475–594. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  2. Meizer, K.J.: Methods for investigating the strength characteristics of a lunar soil simulant. Geotechnique 24, 13–20 (1974)

    Article  Google Scholar 

  3. Zheng, Y.C., Wang, S.J., Ouyang, Z.Y., Zou, Y., Liu, J., Li, C., Li, X., Feng, J.: CAS-1 lunar soil simulant. Adv. Space Res. 43, 448–454 (2009)

    Article  ADS  Google Scholar 

  4. Carrier, W.D.: Particle size distribution of lunar soil. J. Geotech. Geoenviron. Eng. 129(10), 956–959 (2003)

    Article  Google Scholar 

  5. Alshibli, K.A., Hasan, A.: Strength properties of JSC-1A lunar regolith simulant. J. Geotech. Geoenviron. Eng. 135, 673–679 (2009)

    Article  Google Scholar 

  6. Scholtès, L., Donzé, F.V.: Modelling progressive failure in fractured rock masses using a 3D discrete element method. Rock Mech. Rock Eng. 52, 18–30 (2012)

    Google Scholar 

  7. Camones, L.A.M., Vargas Jr., E.D.A., Figueiredo, R.P.D., Velloso, R.Q.: Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng. Geol. 153, 80–94 (2013)

    Article  Google Scholar 

  8. Ji, S., Di, S., Liu, S.: Analysis of ice load on conical structure with discrete element method. Eng. Comput. 32(4), 1121–1134 (2015)

    Article  Google Scholar 

  9. Ji, S., Li, Z., Li, C., Shang, J.: Discrete element modeling of ice loads on ship hulls in broken ice fields. Acta Oceanol. Sin. 32(11), 50–58 (2013)

    Article  Google Scholar 

  10. Yan, Y., Zhao, J., Ji, S.: Discrete element analysis of breakage of irregularly shaped railway ballast. Geomech. Eng. 10(1), 1–9 (2015)

    Google Scholar 

  11. Hossain, Z., Indrarantna, B., Darve, F., Thakur, P.K.: DEM analysis of angular ballast breakage under cyclic loading. Geomech. Eng. 2(3), 175–181 (2007)

    Google Scholar 

  12. Lu, M., McDowell, G.R.: Discrete element modelling of railway ballast under triaxial conditions. Geomech. Eng. 3(4), 257–270 (2008)

    Google Scholar 

  13. McDowell, G.R., Li, H.: Discrete element modelling of scaled railway ballast under triaxial conditions. Granul. Matter 18, 66 (2016)

    Article  Google Scholar 

  14. Gao, W., Liu, L., Liao, Z., Chen, S., Zang, M., Tan, Y.: Discrete element analysis of the particle mixing performance in a ribbon mixer with a double U-shaped vessel. Granul. Matter 21, 12 (2019)

    Article  Google Scholar 

  15. Ma, Z.Y., Dang, F.N., Liao, H.J.: Numerical study of the dynamic compaction of gravel soil ground using the discrete element method. Granul. Matter 16(6), 389–412 (2015)

    Google Scholar 

  16. Liu, K., Gao, L., Tanimura, S.: Application of discrete element method in impact problems. JSME Int J., Ser. A 47(2), 138–145 (2004)

    Article  ADS  Google Scholar 

  17. Hasan, A., Alshibli, K.A.: Discrete element modeling of strength properties of Johnson Space Center (JSC-1 A) lunar regolith simulant. J. Aerosp. Eng. 23(3), 157–165 (2010)

    Article  Google Scholar 

  18. Lee, S.J., Hashashi, Y.M.A., Wilkinson, R.A., Agui, J.H.: Simulation of experimental tests on the JSC-1A lunar soil simulant with polyhedral discrete elements. In: Earth and Space, pp. 208–216 (2010)

  19. Lee, S.J., Hashashi, Y.M.A., Nezami, E.G.: Simulation of triaxial compression tests with polyhedral discrete elements. Comput. Geotech. 43, 92–100 (2012)

    Article  Google Scholar 

  20. Katagirl, J., Matsushima, T., Yamada, Y., Saiki, K.: Investigation of 3D grain shape characteristics of lunar soil retrieved in Apollo16 using image-based discrete-element modeling. J. Aerosp. Eng. 28(4), 04014092 (2015)

    Article  Google Scholar 

  21. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., Nakano, T.: 3D shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1. J. Aerosp. Eng. 22(1), 15–23 (2009)

    Article  Google Scholar 

  22. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., Nakano, T.: Image-based modeling of lunar soil simulant for 3D DEM simulations. In: Earth and Space 2006: Engineering, Construction, and Operations in Challenging Environment, pp. 1–8. ASCE, Houston (2006)

  23. Chang, C.S., Higher, P.Y.: Model for granular materials with surface energy forces. J. Aerosp. Eng. 22(1), 43–52 (2009)

    Article  Google Scholar 

  24. Jiang, M., Zheng, M., Wang, C.: Distinct element analysis of shear band of lunar soil in biaxial tests. Rock Soil Mech. 33(12), 3801–3809 (2012). (in Chinese)

    Google Scholar 

  25. Jiang, M., Yu, H.S., Harris, D.: A novel discrete model granular material incorporating rolling resistance. Comput. Geotech. 32(4), 340–357 (2005)

    Article  Google Scholar 

  26. Tryana, V.G., Masami, N.: Modeling of agglutinates and its mechanical properties. In: Earth and Space 2008: Engineering, Construction, and Operations in Challenging Environment, pp. 1–8. ASCE, Long beach (2008)

  27. Lin, C.X., Ling, D.S., Zhong, S.Y.: Experimental research and discrete element analysis of shear strength of lunar soil stimulants. Rock Soil Mech. 38(3), 893–901 (2017). (in Chinese)

    Google Scholar 

  28. Modenese, C., Utili, S., Houlsby, G.T.: A study of the influence of surface energy on the mechanical properties of lunar soil using DEM: discrete element modelling of particulate media, pp. 69–75. Royal Society of Chemistry Press, England (2012)

    Google Scholar 

  29. Nakashima, H., Shioji, Y., Tateyama, K., Aoki, S., Kanamori, H., Yokoyama, T.: Specific cutting resistance of lunar regolith simulant under low gravity conditions. J. Space Eng. 1(1), 58–68 (2008)

    Article  Google Scholar 

  30. Jiang, M., Xi, B., Lei, H.: Investigation of gravity effect on penetration resistance in Tongji-1 lunar regolith simulant by centrifuge tests. Adv. Space Res. 62(5), 945–956 (2018)

    Article  ADS  Google Scholar 

  31. Tancredi, G., Maciel, A., Heredia, L., Richeri, P., Nesmachnow, S.: Granular physics in low-gravity environments using discrete element method. Mon. Not. R. Astron. Soc. 420, 3368–3380 (2012)

    Article  ADS  Google Scholar 

  32. Zou, M., Fan, S.C., Shi, R.Y., Yang, Y.J., Li, J.Q.: Effect of gravity on the mechanical properties of lunar regolith tested using a low gravity simulation device. J. Terramech. 60, 11–22 (2015)

    Article  Google Scholar 

  33. Huang, Y., Zheng, H.: Mechanical characteristics of a lunar regolith simulant at low confining pressure. Environ. Earth Sci. 71, 3697–3703 (2014)

    Article  Google Scholar 

  34. Zhang, Y., Chen, S.X., Yu, F., Li, J., Gao, H.: Experimental study of mechanical properties of lunar soil simulant CAS-1 under low stress. Chin. J. Rock Mech. Eng. 34(1), 174–181 (2015)

    Google Scholar 

  35. Zou, W.L., Li, Y.L., Cheng, L., Zhang, J.F., Wang, X.Q.: Mechanical properties of QH-E lunar soil simulant at low confining stresses. J. Aerosp. Eng. 29(2), 04015036 (2016)

    Article  Google Scholar 

  36. Li, Y.L., Zou, W.L., Wu, W.P., Chen, L.: Discrete element modeling of strength properties and failure modes of QH-E lunar soil simulant at low confining stresses. Civ. Eng. J. 2, 211–226 (2018)

    Google Scholar 

  37. Li, Y.L., Zou, W.L., Wu, W.P., Chen, L., Chu, X.H.: Triaxial compression tests of QH-E lunar soil simulant under constant mean principal stress path using discrete element method simulations. Granul. Matter 20, 79–91 (2018)

    Article  ADS  Google Scholar 

  38. Jiang, M., Li, L., Yang, Q.: Experimental investigation on deformation behavior of TJ-1 lunar soil simulant subjected to principal stress rotation. Adv. Space Res. 52, 136–146 (2013)

    Article  ADS  Google Scholar 

  39. Rodriguez, N.M., Lade, P.V.: Effects of principal stress directions and mean normal stress on failure criterion for cross-anisotropic sand. J. Eng. Mech. 139(11), 1592–1601 (2013)

    Article  Google Scholar 

  40. Liu, E., Shen, Z.: Mechanical behavior of structured soils under different stress paths. Chin. J. Rock Mech. Eng. 25(10), 2058–2064 (2006)

    Google Scholar 

  41. Zhang, D., Liu, Y., Wu, S.C.: Simulation of strength characteristics of granular materials in true triaxial test for different stress paths and its mesoscopic mechanism analysis. Rock Soil Mech. 37(Supp. 1), 509–520 (2016). (in Chinese)

    Google Scholar 

  42. Kong, L.W., Meng, Z., Guo, A.G., Tuo, Y.F.: Effect of stress path on strength properties of Zhanjiang strong structured clay. Rock Soil Mech. 36(Supp.1), 19–24 (2015). (in Chinese)

    Google Scholar 

  43. Dong, J.J.: Numerical simulation of triaxial compression stress paths tests for unsaturated soil. Electron. J. Geotech. Eng. 18(A), 101–109 (2013)

    Google Scholar 

  44. Wang, J., Yin, Y., Luo, C.: Johnson–Holmquist-II(JH-2) constitutive model for rock materials: parameter determination and application in tunnel smooth blasting. Appl. Sci. 8, 1675 (2018)

    Article  Google Scholar 

  45. Nermoen, A., Korsnes, R.I., Aursjø, O., Madland, M.V., Kjørslevik, T.A.C., Østensen, G.: How stress and temperature conditions affect rock-fluid chemistry and mechanical deformation. Front. Phys. 4, 1–19 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (NSFC, Grant Nos. 51779191, 11472196, 51079075), and China Postdoctoral Science Foundation (Grant No. 2018M642908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenping Wu or Weilie Zou.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, W., Chu, X. et al. Effects of stress paths on triaxial compression mechanical properties of QH-E lunar soil simulant studied by DEM simulation. Granular Matter 22, 32 (2020). https://doi.org/10.1007/s10035-020-0999-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-0999-y

Keywords

Navigation