Skip to main content
Log in

Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The present paper adopts the dimensionless depth-averaged continuum model for avalanches to study interactions between an avalanche and obstacle. Three approaches are used to represent the effect of an obstacle on an avalanche. The first is to include the obstacle as the terrain, the second is to exclude the obstacle from the computation domain, and the third is to define the avalanche–obstacle interaction force with a new mathematical expression proposed in this paper. Combined with the three obstacle treatment approaches, we simulate the flow process of an avalanche bypassing different heights of obstacles placed either in the inclined plane or deposit zone. Hydrodynamic model and S–H theory are comparatively studied in the simulation of an avalanche bypassing a high dam in the inclined plane. In the simulation of avalanche striking a low dam in the inclined plane, the first and third obstacle treatment approaches are systematically compared. The effect of the coefficient of friction acting between the side walls and avalanche and the effect of the angle of basal friction are investigated by fixing a cuboid in the deposit zone.

Graphic abstract

Computed deposit configuration (a); computed sequences at four time points represented by different colors (b); grains overtopping a dam as captured adopting the third approach of obstacle treatment (c); the evolution of avalanche depths with different drag coefficients during the flow process at two positions (d)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu, C., Huang, Y., Zhan, L.T.: SPH-based simulation of flow process of a landslide at Hongao landfill in China. Nat. Hazards 93, 1113–1126 (2018)

    Google Scholar 

  2. Zhan, L.T., Zhang, Z., Chen, Y.M., Chen, R., Zhang, S., Liu, J., Li, A.: The 2015 Shenzhen catastrophic landslide in a construction waste dump: reconstitution of dump structure and failure mechanisms via geotechnical investigations. Eng. Geol. 238, 15–26 (2018)

    Google Scholar 

  3. Kattel, P., Kafle, J., Fischer, J.T., Mergili, M., Tuladhar, B.M., Pudasaini, S.P.: Interaction of two-phase debris flow with obstacles. Eng. Geol. 242, 197–217 (2018)

    Google Scholar 

  4. National Railway Administration of P.R.C.: Code for design on special railway earth structure. TB 10035. China Railway Publishing House, Beijing, China (2018) (in Chinese)

  5. Tai, Y.C., Gray, J.M.N.T., Hutter, K., Noelle, S.: Flow of dense avalanches past obstructions. Ann. Glaciol. 32(1), 281–284 (2001). https://doi.org/10.3189/172756401781819166

    Article  ADS  Google Scholar 

  6. Cui, X., Gray, J.M.N.T., Johannesson, T.: Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res. Earth Surf. (2007). https://doi.org/10.1029/2006JF000712

    Article  Google Scholar 

  7. Jóhannesson, T., Gauer, P., Issler, D., Lied, K.: The design of avalanche protection dams: recent practical and theoretical developments. European Commission, Directorate-General for Research Publication EUR 23339 (2009). https://doi.org/10.2777/12871

  8. Abdelrazek, A.M., Kimura, I., Shimizu, Y.: Numerical simulation of granular flow past simple obstacles using the SPH method. J. Jap. Soc. Civ. Eng. Ser. B1 (Hydr. Eng.) 71, 199–204 (2015)

    Google Scholar 

  9. Tai, Y.C., Wang, Y., Gray, J.M.N.T., Hutter, K.: Methods of similitude in granular avalanche flows. In: Hutter K, Wang Y, Beer H (eds.) Advances in cold-regions thermal engineering and sciences lecture notes in physics, pp. 415–428 (1999). https://doi.org/10.1007/BFb0104200

  10. Gray, J.M.N.T., Tai, Y.C., Noelle, S.: Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161–181 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Gray, J.M.N.T., Cui, X.: Weak, strong and detached oblique shocks in gravity driven granular free-surface flows. J. Fluid Mech. 579, 113–136 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Hákonardóttir, K.M., Hogg, A.J.: Oblique shocks in rapid granular flows. Phys. Fluids 17, 077101 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Hauksson, S., Pagliardi, M., Barbolini, M., Jóhannesson, T.: Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg. Sci. Technol. 49, 54–63 (2007)

    Google Scholar 

  14. Naaim-Bouvet, F., Naaim, M., Bacher, M., Heiligenstein, L.: Physical modelling of the interaction between powder avalanches and defence structures. Nat. Hazard Earth Sys. 2, 193–202 (2002)

    Google Scholar 

  15. Hákonardóttir, K.M., Hogg, A.J., Batey, J., Woods, A.W.: Flying avalanches. Geophys. Res. Lett. 1, 1 (2003). https://doi.org/10.1029/2003GL018172

    Article  Google Scholar 

  16. Faug, T., Gauer, P., Lied, K., Naaim, M.: Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J. Geophys. Res. 113, F03009 (2008)

    ADS  Google Scholar 

  17. Faug, T., Beguin, R., Chanut, B.: Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys. Rev. E 80, 021305 (2009)

    ADS  Google Scholar 

  18. Viroulet, S., Baker, J.L., Edwards, A.N., Johnson, C.G., Gjaltema, C., Clavel, P., Gray, J.M.M.T.: Multiple solutions for granular flow over a smooth two-dimensional bump. J. Fluid Mech. 815, 77–116 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Faug, T., Childs, P., Wyburn, E., Einav, I.: Standing jumps in shallow granular flows down smooth inclines. Phys. Fluids 27, 073304 (2015)

    ADS  Google Scholar 

  20. Levy, A., Sayed, M.: Numerical simulations of the flow of dilute granular materials around obstacles. Powder Technol. 181, 137–148 (2008)

    Google Scholar 

  21. Kattel, P., Tuladhar, B.M.: Interaction of Two-phase Debris Flow with Lateral Converging Shear Walls. J. Nepal Math Soci. 1, 40–52 (2018)

    Google Scholar 

  22. Chehata, D., Zenit, R., Wassgren, C.R.: Dense granular flow around an immersed cylinder. Phys. Fluids 15, 1622–1631 (2003)

    ADS  MATH  Google Scholar 

  23. Abdelrazek, A.M., Kimura, I., Shimizu, Y.: Simulation of three-dimensional rapid free-surface granular flow past different types of obstructions using the SPH method. J. Glaciol. 62, 335–347 (2016)

    ADS  Google Scholar 

  24. Vreman, A.W., Al-Tarazi, M., Kuipers, J.A.M., Van, S.A.M., Bokhove, O.: Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233–269 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Akers, B., Bokhove, O.: Hydraulic flow through a channel contraction: multiple steady states. Phys. Fluids 20, 056601 (2008)

    ADS  MATH  Google Scholar 

  26. Chiou, M.C., Wang, Y., Hutter, K.: Influence of obstacles on rapid granular flows. Acta Mech. 175, 105–122 (2005). https://doi.org/10.1007/s00707-004-0208-9

    Article  MATH  Google Scholar 

  27. Teufelsbauer, H., Wang, Y., Pudasaini, S.P., Borja, R.I., Wu, W.: DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech. 6, 119–133 (2011)

    Google Scholar 

  28. Juez, C., Caviedes-Voullième, D., Murillo, J., García-Navarro, P.: 2D dry granular free-surface transient flow over complex topography with obstacles part ii: numerical predictions of fluid structures and benchmarking. Comput. Geosci. 73, 142–163 (2014)

    ADS  Google Scholar 

  29. Cuomo, S., Cascini, L., Pastor, M., Petrosino, S.: Modelling the Propagation of Debris Avalanches in Presence of Obstacles 4th World Landslide Forum, pp. 469–475. Ljubjana, Slovenia (2017)

    Google Scholar 

  30. Choi, C.E., Ng, C.W.W., Law, R.P.H., Song, D., Ho, K.K.S.: Computational investigation of baffle configuration on impedance of channelized debris flow. Can. Geotech. J. 52, 182–197 (2014)

    Google Scholar 

  31. Bi, Y., He, S., Du, Y.J., Sun, X., Li, X.: Effects of the configuration of a baffle–avalanche wall system on rock avalanches in Tibet Zhangmu: discrete element analysis. B Eng. Geol. Environ. 78, 2267–2282 (2018)

    Google Scholar 

  32. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989). https://doi.org/10.1017/S0022112089000340

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Hungr, O.: A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 32(4), 610–623 (1995). https://doi.org/10.1139/t95-063

    Article  Google Scholar 

  34. Hutter, K.: Avalanche dynamics. In: Hydrology of Disasters, pp 317–394. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-015-8680-1_11

    Google Scholar 

  35. Gray, J.M.N.T., Wieland, M., Hutter, K.: Gravity-driven free surface flow of granular avalanches over complex basal topography. R. Soc. Lond. Proc. Ser. A 455, 1841–1874 (1999). https://doi.org/10.1098/rspa.1999.0383

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics, pp. 4–16. Springer, Berlin (2007)

    Google Scholar 

  37. Takahashi, T.: Debris flow. Balkema, Rotterdam (1991)

    Google Scholar 

  38. O’Brien, J.S., Julien, P.Y., Fullerton, W.T.: Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 119, 244–261 (1993)

    Google Scholar 

  39. Iverson, R.M., Reid, M.E., LaHusen, R.G.: Debris-flow mobilization from landslides. Annu. Rev. Earth Plant. Sc. 25, 85–138 (1997)

    ADS  Google Scholar 

  40. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidised granular masses across three-dimensional terrain: 1 Coulomb mixture theory. J. Geophys. Res.-Sol. Ear. 106, 537–552 (2001)

    ADS  Google Scholar 

  41. Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res.-Earth Sur. 117, F03010 (2012)

    ADS  Google Scholar 

  42. Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A. 363, 1573–1601 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Diaz, M.C., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 7720–7754 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Cui, X., Gray, J.M.N.T.: Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech. 720, 314–337 (2013)

    ADS  MATH  Google Scholar 

  45. Hutter, K., Savage, S.B., Nohguchi, Y.: Two-dimensional spreading of a granular avalanche down an inclined plane: part I theory. Acta Mech. 100, 37–68 (1993). https://doi.org/10.1007/BF01176861

    Article  MathSciNet  MATH  Google Scholar 

  46. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    ADS  MATH  Google Scholar 

  47. Buchholz, V., Pöschel, T.: Interaction of a granular stream with an obstacle. Granul. Matter 1, 33–41 (1998)

    MATH  Google Scholar 

  48. Zenit, R., Karion, A.: Granular flow around a cylinder. In: Proceedings of the 2000 AIChE Annual Fall Meeting, Los Angeles, CA (2000)

  49. Takehara, Y., Sachika, F., Ko, O.: High-velocity drag friction in dense granular media. Europhys. Lett. 924, 44003 (2010)

    Google Scholar 

  50. Takada, S., Hayakawa, H.: Drag law of two-dimensional granular fluids. J. Eng. Mech. 1431, C4016004 (2016)

    Google Scholar 

  51. Salm, B., Burkard, A., Gubler, H.: Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen (Avalanche calculations: a practical method with examples). Eidgen. Inst. für Schnee und Lawinenforschung (1990) (in German)

  52. Pazwash, H., Robertson, J.M.: Forces on bodies in Bingham fluids. J. Hydraul. Res. 131, 35–55 (1975)

    Google Scholar 

  53. Voellmy, A.: Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73 (1955) (in German)

  54. Davis, S.F.: TVD finite difference schemes and artificial viscosity. Report No 84-20, Institute for computer application in science and engineering, NASA Langley Research Center, Hampton (1984)

  55. Liang, D., Falconer, R.A., Lin, B.: Comparison between TVD-MacCormack and ADI-type solvers of the shallow water equations. Adv. Water Resource 29, 1833–1845 (2006)

    ADS  Google Scholar 

  56. Liang, D., Lin, B., Falconer, R.A.: Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme. Int. J. Num. Meth. Fluids 53, 811–826 (2007)

    MATH  Google Scholar 

  57. Teufelsbauer, H., Wang, Y., Chiou, M.C., Wu, W.: Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11, 209–220 (2009)

    MATH  Google Scholar 

  58. Pfeiff, C.F., Hopfinger, E.J.: Drag on cylinders moving through suspensions with high solid concentration. Physico. Chem. Hydrodyn. 7, 101–109 (1986)

    Google Scholar 

  59. Hákonardóttir, K.M., Hogg, A.J., Batey, J., Woods, A.W.: Flying avalanches. Geophys. Res. Lett. 30, 2191 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

The research is funded by the National Key Research Development Program of China (Grant No. 2017YFC0404802), the National Natural Science Foundation of China (NSFC) under Grant No. 41790434, and the Key Research and Development Program of China Railway (Grant No. K2019G033).

Author information

Authors and Affiliations

Authors

Contributions

FJ: Conceptualization, Software, Writing-Original draft preparation, Methodology; JY: Supervision, Funding Acquisition; CH: Writing—Review & Editing, Visualization, Investigation; ZW: Supervision, Project Administration.

Corresponding author

Correspondence to Chengyu Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Jie, Y., Hong, C. et al. Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach. Granular Matter 22, 31 (2020). https://doi.org/10.1007/s10035-020-0995-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-0995-2

Keywords

Navigation