Skip to main content
Log in

Runout transition and clustering instability observed in binary-mixture avalanche deposits

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Binary mixtures of dry grains avalanching down a slope are experimentally studied to determine the interaction among coarse and fine grains and their effect on the morphology of the deposit. The distance traveled by the massive front of the avalanche on the horizontal plane of deposition area is measured as a function of mass content of fine particles in the mixture, grain-size ratio, and flume tilt. A sudden transition of the runout is detected at a critical content of fine particles, with a dependence on the grain-size ratio and flume tilt. This transition is explained in terms of the depth-averaged segregation models that describe how large particles are transported preferentially towards the avalanche front and accumulate there. Segregation by sizes during the avalanching and deposition stages produces distinct morphologies of the final deposit as the coarse-particle content is increased until full segregation and a split-off of the deposit into two well-defined separated deposits occur for certain size ratios. The formation of a separated distal deposit, in turn, depends on a critical number of coarse particles. A large number of dispersed coarse particles allows the condensation of the pure-coarse deposit around a small, initial seed cluster, which grows rapidly by braking and capturing subsequent colliding coarse particles. For different grain-size ratios, keeping the total mass constant, the change in the amount of fine particles needed for the transition to occur is found to be always less than 7%. For avalanches with a total mass of 4 kg we find that, most of the time, the runout of a binary avalanche is larger than the runout of monodisperse avalanches of corresponding constituent particles, due to lubrication on the coarse-dominated side or to drag by large particles on the fine-dominated side.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Robinson, T.R., Davies, T.R.H., Reznichenko, N.V., De Pascale, G.P.: The extremely long-runout Komansu rock avalanche in the Trans Alai range, Pamir Mountains, southern Kyrgyzstan. Landslides 12, 523–535 (2015)

    Google Scholar 

  2. Clavero, J.E., Sparks, R.S.J., Huppert, H.E., Dade, W.B.: Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bull. Volcanol. 64, 40–54 (2002)

    ADS  Google Scholar 

  3. Fauque, L., Strecker, M.R.: Large rock avalanche deposits (Sturzströme, sturzstroms) at Sierra Aconquija, northern Sierras Pampeanas Argentina. Eclogae Geol Helv 81, 572–599 (1988)

    Google Scholar 

  4. Siebert, L.: Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J. Volcanol. Geotherm. Res. 22, 163–197 (1984)

    ADS  Google Scholar 

  5. Ui, T.: Volcanic dry avalanche deposits-Identification and comparison with nonvolcanic debris stream deposits. J. Volcanol. Geotherm. Res. 18, 135–150 (1983)

    ADS  Google Scholar 

  6. Goujon, C., Thomas, N., Dalloz-Dubrujeau, B.: Monodisperse dry granular flows on inclined planes: role of roughness. Eur. Phys. J. E 11, 147–157 (2003)

    Google Scholar 

  7. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11, 542 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Andreotti, B., Daerr, A., Douady, S.: Scaling laws in granular flows down a rough plane. Phys. Fluids 14, 415–418 (2002)

    ADS  MATH  Google Scholar 

  9. Campbell, C.: Granular material flows—an overview. Powder Tech. 162, 208–229 (2006)

    Google Scholar 

  10. Yang, Q., Cai, F., Ugai, K., Yamada, M., Su, Z., Ahmed, A., Huang, R., Xu, Q.: Some factors affecting mass-front velocity of rapid dry granular flows in a large flume. Eng. Geol. 122, 249–260 (2011)

    Google Scholar 

  11. Huerta, D.A., Sosa, V., Vargas, M.C., Ruiz-Suárez, J.C.: Archimede’s principle in fluidized granular systems. Phys. Rev. E 72, 031307 (2005)

    ADS  Google Scholar 

  12. Pacheco-Vázquez, F., Ruiz-Suárez, J.C.: Sliding through a superlight granular medium. Phys. Rev. E 80, 060301(R) (2009)

    ADS  Google Scholar 

  13. Hungr, O., Evans, S.G.: Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol. Soc. Am. Bull. 116, 1240–1252 (2004)

    ADS  Google Scholar 

  14. Charrière, M., Humair, F., Froese, C., Jaboyedo, M., Pedrazzini, A., Longchamp, C.: From the source area to the deposit: collapse, fragmentation, and propagation of the Frank Slide. Geol. Soc. Am. Bull. 128, 332–351 (2015)

    Google Scholar 

  15. Linares-Guerrero, E., Goujon, C., Zenit, R.: Increased mobility of bi disperse granular avalanches. J. Fluid Mech. 593, 475–504 (2007)

    ADS  MATH  Google Scholar 

  16. Van Gassen, W., Cruden, D.M.: Momentum transfer and friction in the debris of rock avalanches. Can. Geotech. J. 27, 698–699 (1990)

    Google Scholar 

  17. Bartali, R., Sarocchi, D., Nahmad-Molinari, Y.: Stick-slip motion and high speed ejecta in granular avalanches detected through a multi-sensors flume. Eng. Geol. 195, 248–257 (2015)

    Google Scholar 

  18. Bartali, R., Sarocchi, D., Nahmad-Molinari, Y., Rodríguez-Sedano, L.A.: Estudio de flujos granulares de tipo geológico por medio del simulador multisensor GRANFLOW-SIM. Boletín de la Sociedad Geológica Mexicana 64, 265–275 (2012)

    Google Scholar 

  19. Valderrama, P., Roche, O., Samaniego, P., Van Wyk Des Vries, B., Araujo, G.: Granular fingering as a mechanism for ridge formation in debris avalanche deposits: laboratory experiments and implications for Tutupaca volcano, Peru. J. Volcanol. Geotherm. Res. 349, 409–418 (2018).

    ADS  Google Scholar 

  20. Rowley, P.J., Kokelaar, P., Menzies, M., Waltham, D.: Shear-derived mixing in dense granular flows. J. Sediment. Res. 81, 874–884 (2011)

    ADS  Google Scholar 

  21. Paguican, E.M.R., Van Wyk de Vries, B., Lagmay, A.: Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11, 67–80 (2014).

    Google Scholar 

  22. Phillips, J.C., Hogg, A.J., Kerswell, R.R., Thomas, N.H.: Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet. Sci. Lett. 246, 466–480 (2006)

    ADS  Google Scholar 

  23. Moro, F., Faug, T., Bellot, H., Ousset, F.: Large mobility of dry snow avalanches: insights from small-scale laboratory tests on granular avalanches of bidisperse materials. Cold Regions Sci. Technol. 62, 55–66 (2010). https://doi.org/10.1016/j.coldregions.2010.02.011

    Article  Google Scholar 

  24. Goujon, C., Dalloz-Dubrujeaud, B., Thomas, N.: Bidisperse granular avalanches on inclined planes: a rich variety of behaviors. Eur. Phys. J. E 23, 199–215 (2007)

    Google Scholar 

  25. Kokelaar, B.P., Graham, R.L., Gray, J.M.N.T., Vallance, J.W.: Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385, 172–180 (2014)

    ADS  Google Scholar 

  26. Gray, J.M.N.T., Ancey, C.: Segregation, recirculation and deposition of coarse particles near two-dimensional avalanche fronts. J. Fluid Mech. 629, 387–423 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Gray, J.M.N.T., Kokelaar, B.P.: Large particle segregation, transport and accumulation in granular free-surface flows. J. Fluid Mech. 652, 105–137 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Wiederseiner, S., Andreini, N., Épely-Chauvin, G., Moser, G., Monnereau, M., Gray, J.M.N.T., Ancey, C.: Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301 (2011)

    ADS  Google Scholar 

  29. Baker, J.L., Johnson, C.G., Gray, J.M.N.T.: Segregation-induced finger formation in granular free-surface flows. J. Fluid Mech. 809, 168–212 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Woodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P., Gray, J.M.N.T.: Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543–580 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  31. On dense granular flows: GDR-MiDi. Eur. Phys. J. E 14, 341–365 (2004)

    Google Scholar 

  32. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive relation for dense granular flows. Nature 44, 727–730 (2006)

    ADS  MATH  Google Scholar 

  33. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    ADS  MATH  Google Scholar 

  34. Wentworth, C.K.: A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922)

    ADS  Google Scholar 

  35. McColl, S.T., Davies, T.R.: Evidence for a rock-avalanche origin for ‘The Hillocks’ “moraine” Otago. N. Z. Geomorphol. 127, 216–224 (2011)

    ADS  Google Scholar 

  36. Glicken, H.: Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. United States Geological Survey Open File Report 96-677 (1996)

  37. Pérez, G.: Numerical simulations in granular matter: the discharge of 2D silo. Pramana J. Phys. 70, 989–1007. https://doi.org/10.1007/s12043-008-0104-2 (2008).

    ADS  Google Scholar 

  38. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  39. Schäfer, J., Dippel, S., Wolf, D.: Force schemes in simulations of granular materials. J. Phys. I, EDP Sci. 6(1), 5–20 (1996). https://doi.org/10.1051/jp1:1996129

    Article  ADS  Google Scholar 

  40. Gray, J.M.N.T., Edwards, A.N.: A depth-averaged µ(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503–534 (2014). https://doi.org/10.1017/jfm.2014.450

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619 (1993)

    ADS  Google Scholar 

  42. Olafsen, J.S., Urbach, J.S.: Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369 (1998)

    ADS  Google Scholar 

  43. Sapozhnikov, M.V., Aranson, I.S., Olafsen, J.S.: Coarsening of granular clusters: Two types of scaling behaviors. Phys. Rev. E 67, 010302(R) (2003)

    ADS  Google Scholar 

  44. Bordallo-Favela, R.A., Ramírez-Saíto, A., Pacheco-Molina, C.A., Perera-Burgos, J.A., Nahmad-Molinari, Y., Pérez, G.: Effective potentials of dissipative hard spheres in granular matter. Eur. Phys. J. E 28, 395–400 (2009)

    Google Scholar 

  45. Perera-Burgos, J.A., Pérez-Ángel, G., Nahmad-Molinari, Y.: Diffusivity and weak clustering in a quasi-two-dimensional granular gas. Phys. Rev. E 82, 051305 (2010)

    ADS  Google Scholar 

  46. Mikkelsen, R., Van der Meer, D., Van der Weele, K., Lohse, D.: Competitive clustering in a bidisperse granular gas. Phys. Rev. Lett. 89, 214301 (2002)

    ADS  Google Scholar 

  47. Mikkelsen, R., Van der Weele, K., Van der Meer, D., Van Hecke, M., Lohse, D.: Small-number statistics near the clustering transition in a compartmentalized granular gas. Phys. Rev. E 71, 041302 (2005)

    ADS  Google Scholar 

  48. Crandell, D.R., Miller, C.D., Glicken, H.X., Christiansen, R.L., Newhall, C.G.: Catastrophic debris avalanche from ancestral Mount Shasta volcano. Calif Geol 12(3), 143–146 (1984)

    Google Scholar 

  49. Godoy, B., Clavero, J., Rojas, C., Godoy, E.: Facies volcánicas del depósito de avalancha de detritos del volcán Tata Sabaya Andes Centrales. Andean Geol. 39(3), 394–406 (2012)

    Google Scholar 

  50. Shreve, R.L.: The Blackhawk Landslide. GSA Special Papers 1081-48 (1968)

  51. Hsü, K.J.: Albert Heim, observations on landslides and relevance to modern interpretations. In: Voight B (ed) Rockslides and Avalanches: Developments in Geotechnical Engineering, vol. 14A, Amsterdam, Elsevier, pp. 71–92 (1978)

  52. Bowman, E.T., Take, W.A., Rait, K.L., Hann, C.: Physical models of rock avalanche spreading behavior with dynamic fragmentation. Can. Geotech. J. 49, 460–476 (2012)

    Google Scholar 

  53. Heim, A.: Der Bergsturz von Elm. Zeitschrift der Deutschen Geologischen Gesellschaft 34, 74–115 (1882)

    Google Scholar 

  54. Hsü, K.J.: Catastrophic debris streams generated by rock falls. Geol. Soc. of Am. Bull. 86, 129–140 (1975)

    ADS  Google Scholar 

  55. Corominas, J.: The angle of reach as a mobility index for small and large landslides. Can. Geotech. J. 33, 260–271 (1996)

    Google Scholar 

  56. Legros, F.: The mobility of long-runout landslides. Eng. Geol. 63, 301–331 (2002)

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Geology Institute of Universidad Autónoma de San Luis Potosí, for sharing with us their facilities. This project was partially Funded by CONACYT Grant Number 221961, Ph.D.-scholarship Grant Number 45697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bartali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartali, R., Rodríguez Liñán, G.M., Torres-Cisneros, L. et al. Runout transition and clustering instability observed in binary-mixture avalanche deposits. Granular Matter 22, 30 (2020). https://doi.org/10.1007/s10035-019-0989-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0989-0

Keywords

Navigation