Skip to main content
Log in

A new route for developing highly efficient nano biochemical sensors for detecting ultra-low concentrations of tetracycline antibiotic residue in water

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

This study reports a new detection process for sensing ultra-low concentrations of tetracycline (TC), using a hot spot surface-enhanced Raman scattering (SERS) sensor. A gold nanoparticles/ macroporous silicon (Au NPs/macroPSi) hot spot SERS sensor was fabricated using a very simple and low cost method. The SERS signal was investigated using Au NPs/macroPSi hot spot SERS sensor for efficient detection of TC antibiotics at lower concentrations of (10−3–10−9) mol/L. The sensor showed an excellent performance for TC detection with an enhancement factor (EF) of 2 × 108, ultra-low detection limit of 10−9 mol/L, and very high reproducibility with a relative standard deviation of 2%. The effect of the pH value on the behavior of the SERS spectra for TC antibiotic was evaluated, and it was found that pH values of 5 and 6 were the best for the detection process of TC antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother 47(12):3675–3681

    Article  CAS  Google Scholar 

  2. Jin D, Bai Y, Chen H, Liu S, Chen N, Huang J, Huang S, Chen Z (2015) SERS detection of expired tetracycline hydrochloride with an optical fiber nano-probe. Anal Methods 7(4):1307–1312

    Article  CAS  Google Scholar 

  3. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260

    Article  CAS  Google Scholar 

  4. Dhakal S, Chao K, Huang Q, Kim M, Schmidt W, Qin J, Broadhurst CL (2018) A simple surface-enhanced Raman spectroscopic method for on-site screening of tetracycline residue in whole Milk. Sensors 18(2):424

    Article  Google Scholar 

  5. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    Article  CAS  Google Scholar 

  6. Lin Y, Xu S, Li J (2013) Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem Eng J 225:679–685

    Article  CAS  Google Scholar 

  7. Li R, Zhang H, Chen Q-W, Yan N, Wang H (2011) Improved surface-enhanced Raman scattering on micro-scale Au hollow spheres: synthesis and application in detecting tetracycline. Analyst 136(12):2527–2532

    Article  CAS  Google Scholar 

  8. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74(7):1509–1518

    Article  CAS  Google Scholar 

  9. Zhang Y, Lu S, Liu W, Zhao C, Xi R (2007) Preparation of anti-tetracycline antibodies and development of an indirect heterologous competitive enzyme-linked immunosorbent assay to detect residues of tetracycline in milk. J Agric Food Chem 55(2):211–218

    Article  CAS  Google Scholar 

  10. Burkhead MS, Wang H, Fallet M, Gross EM (2008) Electrogenerated chemiluminescence: an oxidative-reductive mechanism between quinolone antibiotics and tris (2, 2′-bipyridyl) ruthenium (II). Anal Chim Acta 613(2):152–162

    Article  CAS  Google Scholar 

  11. Dang PK, Degand G, Danyi S, Pierret G, Delahaut P, Ton VD, Maghuin-Rogister G, Scippo M-L (2010) Validation of a two-plate microbiological method for screening antibiotic residues in shrimp tissue. Anal Chim Acta 672(1–2):30–39

    Article  CAS  Google Scholar 

  12. Deng B, Xu Q, Lu H, Ye L, Wang Y (2012) Pharmacokinetics and residues of tetracycline in crucian carp muscle using capillary electrophoresis on-line coupled with electrochemiluminescence detection. Food Chem 134(4):2350–2354

    Article  CAS  Google Scholar 

  13. Conzuelo F, Campuzano S, Gamella M, Pinacho DG, Reviejo AJ, Marco MP, Pingarrón JM (2013) Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens Bioelectron 50:100–105

    Article  CAS  Google Scholar 

  14. Song E, Yu M, Wang Y, Hu W, Cheng D, Swihart MT, Song Y (2015) Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens Bioelectron 72:320–325

    Article  CAS  Google Scholar 

  15. Chen Y, Chen Q, Han M, Liu J, Zhao P, He L, Zhang Y, Niu Y, Yang W, Zhang L (2016) Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens Bioelectron 79:430–434

    Article  CAS  Google Scholar 

  16. Li H, Chen Q, Hassan MM, Chen X, Ouyang Q, Guo Z, Zhao J (2017) A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification. Biosens Bioelectron 92:192–199

    Article  CAS  Google Scholar 

  17. Watanabe K, Tanaka E, Ishii H, Nagao D (2018) The plasmonic properties of gold nanoparticle clusters formed via applying an AC electric field. Soft Matter 14(17):3372–3377

    Article  CAS  Google Scholar 

  18. Lee J-H, Cho H-Y, Choi H, Lee J-Y, Choi J-W (2018) Application of gold nanoparticle to plasmonic biosensors. Int J Mol Sci 19(7):2021

    Article  CAS  Google Scholar 

  19. Alwan AM, Naseef IA, Dheyab AB (2018) Well controlling of plasmonic features of gold nanoparticles on macro porous silicon substrate by HF acid concentration. Plasmonics:1–9

  20. Alwan AM, Dheyab AB (2017) Room temperature CO2 gas sensors of AuNPs/mesoPSi hybrid structures. Appl Nanosci 7(7):335–341

    Article  CAS  Google Scholar 

  21. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706(1):8–24

    Article  CAS  Google Scholar 

  22. Alwan AM, Wali LA, Yousif AA (2018) Optimization of AgNPs/mesoPS active substrates for ultra-low molecule detection process. Silicon:1–11

  23. Alwan AM, Yousif AA, Wali LA (2017) A study on the morphology of the silver nanoparticles deposited on the n-type porous silicon prepared under different illumination types. Plasmonics:1–9

  24. Alwan AM, Yousif AA, Wali LA (2017) The growth of the silver nanoparticles on the mesoporous silicon and macroporous silicon: a comparative study. Indian J Pure Appl Phys (IJPAP) 55(11):813–820

    Google Scholar 

  25. Wali LA, Alwan AM, Dheyab AB, Hashim DA (2019) Excellent fabrication of Pd-Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik 179:708–717

    Article  CAS  Google Scholar 

  26. Wali LA, Hasan KK, Alwan AM (2019) Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim Acta A Mol Biomol Spectrosc 206:31–36

    Article  CAS  Google Scholar 

  27. Gunnarsson L, Bjerneld E, Xu H, Petronis S, Kasemo B, Käll M (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802–804

    Article  CAS  Google Scholar 

  28. Leypold CF, Reiher M, Brehm G, Schmitt MO, Schneider S, Matousek P, Towrie M (2003) Tetracycline and derivatives—assignment of IR and Raman spectra via DFT calculations. Phys Chem Chem Phys 5(6):1149–1157

    Article  CAS  Google Scholar 

  29. Liu M, Hou L-a YS, Xi B, Zhao Y, Xia X (2013) MCM-41 impregnated with a zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chem Eng J 223:678–687

    Article  CAS  Google Scholar 

  30. Liu D, Song N, Feng W, Jia Q (2016) Synthesis of graphene oxide functionalized surface-imprinted polymer for the preconcentration of tetracycline antibiotics. RSC Adv 6(14):11742–11748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Technology, Baghdad-Iraq and Mustansiriyah University (www.uomustansiriyah.edu.iq), Baghdad-Iraq for their support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwan M. Alwan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alwan, A.M., Wali, L.A. & Hasan, K.K. A new route for developing highly efficient nano biochemical sensors for detecting ultra-low concentrations of tetracycline antibiotic residue in water. Gold Bull 53, 39–46 (2020). https://doi.org/10.1007/s13404-020-00272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00272-3

Keywords

Navigation