Skip to main content
Log in

Preparation and plasmon resonance properties of Au nanorods and Aunanorods@SiO2

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Au nanorods were prepared through seed growth method. Their lengths and diameters were controlled by adjusting Ag+ content in the growth solution. Ethyl orthosilicate were hydrolyzed in alkali solutions to obtain SiO2-coated Au nanostructures. Au nanorods with ideal morphologies and sizes could only be obtained under the presence of a certain Ag+ concentration in the growth solution. Without Ag+, only some irregular nanoparticles were generated without nanorods. Longitudinal plasma absorption of Au nanorods shifts first to red shift and then to blue with the increase of Ag+ in the growth solution, while transverse plasma absorption hardly changes. However, longitudinal plasma absorption of silica-coated Au nanorods has a blue shift with the increase of the thickness of silica, while the transverse plasma has a slight red shift. Therefore, by coating Au nanorods with silica and by adjusting their aspect ratio by using different Ag+ concentration in the growth solution, Au nanoparticles can be synthesized for applications requiring absorption in specific UV regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peng W, Wenjing S, Qiang W, Jingwen M, Xinhui S, Qing J, Xiaolian S (2019) Iodine-labeled Au nanorods with high radiochemical stability for imaging-guided radiotherapy and photothermal therapy. ACS Appl Nano Mater 2:1374–1381

    Article  Google Scholar 

  2. Xiaonan G, Lulu J, Bo H, Fanpeng K, Xiaojun L, Kehua X, Bo T (2018) Au−Se-bond-based nanoprobe for imaging MMP-2 in tumor cells under a high-thiol environment. Anal Chem 90:4719–4724

    Article  Google Scholar 

  3. Zhenping G, Taishi Z, Hai Z, Da L, Sreelatha S, Qinghua X (2019) Simultaneous imaging and selective photothermal therapy through aptamer-driven Au nanosphere clustering. J Phys Chem Lett 10:183–188

    Article  Google Scholar 

  4. Juan W, Jie H, Chunhua Z, Na H, Juqun X, Lei F (2018) Gold nanorods/polypyrrole/m-SiO2 core/shell hybrids as drug nanocarriers for efficient chemo-photothermal therapy. Langmuir. 34:14661–14669

    Article  Google Scholar 

  5. Yitong W, Ling W, Miaomiao Y, Shuli D, Jingcheng H (2017) Near-infrared-light-responsive magnetic DNA microgels for photon and magneto-manipulated cancer therapy. ACS Appl Mater Interfaces 9:28185–28194

    Article  Google Scholar 

  6. Chih-Chia H, Tzu-Ming L (2015) Controlled Au−polymer nanostructures for multiphoton imaging, prodrug delivery, and chemo−photothermal therapy platforms. ACS Appl Mater Interfaces 7:25259–25269

    Article  Google Scholar 

  7. Nazila M, Laurent D, Herrick S, van der Ad E, de Rijk JW, Tiago AGS, Dipanjan B, Johannes DM, de Krijn P. J, Catherine L (2017) Superior stability of Au/SiO2 compared to Au/TiO2 catalysts for the selective hydrogenation of butadiene. ACS Catal 7:5594–5603

    Article  Google Scholar 

  8. Soo Ik P, Hyon-Min S (2019) Synthesis of prolate-shaped Au nanoparticles and Au nanoprisms and study of catalytic reduction reactions of 4-nitrophenol. ACS Omega 4:7874–7883

    Article  Google Scholar 

  9. Xiaohua H, Prashant KJ, Ivan HE, Mostafa AE (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomed. 2:681–693

    Article  Google Scholar 

  10. Catherine JM, Tapan KS, Anand MG, Christopher JO, Jinxin G, Linfeng G, Simona EH, Tan L (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  Google Scholar 

  11. Luis M, Marzán L (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 22:32–41

    Article  Google Scholar 

  12. Nadine H, Michael JF, Paul M, Michael BC (2008) Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells. Gold Bull 41:5–14

    Article  Google Scholar 

  13. Bing H, Xiaoqing G, Lin S, Yonglong Z, Ke H, Jiawei L, Jun G, Zhang W, Zhiyong T (2017) Geometry-modulated magnetoplasmonic optical activity of Au nanorod-based nanostructures. Nano Lett 17:6083–6089

    Article  Google Scholar 

  14. Andrej G, Volker S, Thomas AB, David JN (2013) Coherent multiphoton photoelectron emission from single Au nanorods: the critical role of plasmonic electric near-field enhancement. ACS Nano 7:87–99

    Article  Google Scholar 

  15. Charles RM (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1965

    Article  Google Scholar 

  16. Veronica MC, Charles RM (1998) Preparation and stability of template-synthesized metal nanorod sols in organic solvents. J Phys Chem B 102:9985–9990

    Article  Google Scholar 

  17. Benjamin RM, Dermody DJ, Brian DR, Mingming FL, Andrew L, Natan MJ, Mallouk TE (1999) Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv Mater 11:1021–1025

    Article  Google Scholar 

  18. van der Zande BMI, Böhmer MR, Fokkink LGJ, Schönenberger C (2000) Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir 16:451–458

    Article  Google Scholar 

  19. Evans P, Hendren WR, Atkinson R, Wurtz GA, Dickson W, Zayats AV, Pollard RJ (2006) Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17:5746–5753

    Article  CAS  Google Scholar 

  20. Yuying Y, Sersing C, Chienliang L, Chris W. CR (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  Google Scholar 

  21. Sersing C, Chaowen S, Chengdah C, Weicheng L, Chris W CR (1999) The shape transition of gold nanorods. Langmuir 15:701–709

    Article  Google Scholar 

  22. Franklin K, song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317

    Article  Google Scholar 

  23. Yasuro N, Koji N, Hideya K, Sunao Y (2003) Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Commun 18:2376–2377

    Google Scholar 

  24. Miranda RO, Temer AS (2005) Effects of intensity and energy of CW UV light on the growth of gold nanorods. J Phys Chem B 109:15724–15734

    Article  CAS  Google Scholar 

  25. Koji N, Ni Y, Sunao Y (2007) Photochemical reactions of ketones to synthesize gold nanorods. Langmuir 23:10353–10356 10353

    Article  Google Scholar 

  26. Placido T, Comparelli R, Giannici F, Cozzoli PD, Capitani G, Striccoli M, Angela A (2009) Photochemical synthesis of water-soluble gold nanorods: the role of silver in assisting anisotropic growth. Chem Mater 21:4192–4202

    Article  CAS  Google Scholar 

  27. Nikhil RJ, Latha G, Catherine JM (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Google Scholar 

  28. Jana NR, Latha G, Catherine JM (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  29. Tapan KS, Catherine JM (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 20:6414–6420

    Article  Google Scholar 

  30. Muhammad I, Yong-Il C, Giyoong T (2007) An enhanced synthesis of gold nanorods by the addition of pluronic (F-127) via a seed mediated growth process. J Mater Chem 17:335–342

    Article  Google Scholar 

  31. Ye X, Linghua J, Humeyra C, Jun C, Xing G, Zheng C, Vicky Doan N, Kang Y, Nader E, Kagan CR (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  CAS  Google Scholar 

  32. Thearith U, Luis ML, Paul M (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452

    Article  Google Scholar 

  33. JoséLuis M, João Paulo C, Andres G, Ovidio P, Umapada P (2017) Fabrication of monodispersed Au@SiO2 nanoparticles with highly stable silica layers by ultrasound-assisted stober method. J Phys Chem C 121:9543–9551

    Article  Google Scholar 

  34. Xinbing J, Ben QL, Xiaoli Q, Huan Y, Jinyou S, Zhang H (2019) Multilayered dual functional SiO2@Au@SiO2@QD nanoparticles for simultaneous intracellular heating and temperature measurement. Langmuir 35:6367–6378

    Article  Google Scholar 

  35. Xueyuan L, Yang X, Chen Y, Chen W, Jiang J, Jiangtao D, Hua Y, Xuezhong D (2019) Dual enhanced electrochemiluminescence of aminated Au@SiO2/CdS quantum dot superstructures: electromagnetic field enhancement and chemical enhancement. ACS Appl Mater Interfaces 11:4488–4499

    Article  Google Scholar 

  36. Li H, Deng Q, Bin L, Jianhui Y, Biao W (2016) Fabrication of core@spacer@shell Aunanorod@mSiO2@Y2O3: Er nanocomposites with enhanced upconversion fluorescence. RSC Adv 6:13343–13348

    Article  CAS  Google Scholar 

  37. Li H, Jianmiao K, Yang J, Biao W (2016) Distance dependence of fluorescence enhancement in Au nanoparticle@mesoporous silica@europium complex. J Phys Chem C 120:16907–16912

    Article  CAS  Google Scholar 

  38. Li H, Kang J, Yang J, Biao W (2016) Fabrication of Aunanoparticle@mSiO2@Y2O3:Eu nanocomposites with enhanced fluorescence. J Alloys Compd 673:283–288

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Natural Science Foundation of National Natural Science Foundation of China (51702006), Shaanxi Education Department Project (17JS009), Ph.D. Research Project of Baoji University of Arts And Sciences (ZK2017027), the Doctoral Scientific Research Foundation of East China University of Technology (DHBK2018039), and the Project of Educational Commission of Jiangxi Province of China (GJJ180408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-xiao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Lq., Li, Hq., Zhao, Ww. et al. Preparation and plasmon resonance properties of Au nanorods and Aunanorods@SiO2. Gold Bull 53, 31–37 (2020). https://doi.org/10.1007/s13404-020-00271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00271-4

Keywords

Navigation