Skip to main content
Log in

Release of adsorbed ferulic acid in simulated gastrointestinal conditions

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Ferulic acid (FA) is a natural antioxidant with limited absorption when conjugated with biomolecules but whose free form is readily absorbed in the stomach and, to a lesser extent, in the ileum. The latter suffers from inflammation and oxidative stress, so a novel strategy for the delivery of FA in this compartment of the gastrointestinal tract was developed. Using the neutral un-functionalized resin Lewatit® VP OC 1064 MD PH, under optimized conditions, a loading of 144 mg FA/g of dry resin was obtained. By means of an in vitro simulated digestion, an average release of 32 mg FA/g of dry loaded resin (recovery of 22%) was observed in intestinal conditions. The incorporation/release of FA onto/from the resin was confirmed by ATR-FTIR spectroscopy and by HPLC-DAD. This work showed that the free form of FA can effectively be delivered in the small intestine, after immobilization in solid matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATR-FTIR:

Attenuated total reflectance-Fourier transform infrared

C0 :

Initial concentration

CA:

Caffeic acid

Ce :

Concentration at equilibrium

ChA:

5-O-Caffeoylquinic acid

Cr :

Concentration of released ferulic acid

FA:

Ferulic acid

GI:

Gastrointestinal

HCA(s):

Hydroxycinnamic acid(s)

HPLC-DAD:

High-performance liquid chromatography with diode-array detection

Lewatit:

Lewatit® VP OC 1064 MD PH

m :

Mass of resin

pCA:

p-Coumaric acid

q e :

Amount of compound adsorbed for unit mass of adsorbent

q r :

Amount of ferulic acid released from the resin

SA:

Sinapic acid

V :

Volume of solution

V r :

Volume of simulated medium

References

  1. El-Seedi HR, El-Said AMA, Khalifa SAM et al (2012) Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem 60:10877–10895. https://doi.org/10.1021/jf301807g

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702. https://doi.org/10.1016/j.foodchem.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  3. Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13:435–448. https://doi.org/10.1016/0891-5849(92)90184-I

    Article  CAS  PubMed  Google Scholar 

  4. Itagaki S, Kurokawa T, Nakata C et al (2009) In vitro and in vivo antioxidant properties of ferulic acid: a comparative study with other natural oxidation inhibitors. Food Chem 114:466–471. https://doi.org/10.1016/j.foodchem.2008.09.073

    Article  CAS  Google Scholar 

  5. Bumrungpert A, Lilitchan S, Tuntipopipat S et al (2018) Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 10:6–13. https://doi.org/10.3390/nu10060713

    Article  CAS  Google Scholar 

  6. Chowdhury S, Ghosh S, Das AK, Sil PC (2019) Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol 10:1–24. https://doi.org/10.3389/fphar.2019.00027

    Article  CAS  Google Scholar 

  7. Ghosh S, Basak P, Dutta S et al (2017) New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem Toxicol 103:41–55. https://doi.org/10.1016/j.fct.2017.02.028

    Article  CAS  PubMed  Google Scholar 

  8. Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195. https://doi.org/10.1016/j.fct.2013.12.024

    Article  CAS  PubMed  Google Scholar 

  9. Sadar SS, Vyawahare NS, Bodhankar SL (2016) Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, inos, cox-2, and apoptosis in laboratory rats. EXCLI J 15:482–499. https://doi.org/10.17179/excli2016-393

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong W-G, Liu S-P, Yu B-P et al (2003) Ameliorative effects of sodium ferulate on experimental colitis and their mechanisms in rats. World J Gastroenterol 9:2533–2538. https://doi.org/10.3748/wjg.v9.i11.2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kandhare AD, Patil A, Guru A et al (2016) Ameliorative effect of ferulic acid against acetic acid induced ulcerative colitis: role of HO-1 and Nrf2. Pharmacologia 7:114–124. https://doi.org/10.5567/pharmacologia.2016.114.124

    Article  CAS  Google Scholar 

  12. Adam A, Crespy V, Levrat-Verny M-A et al (2002) The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J Nutr 132:1962–1968. https://doi.org/10.1093/jn/132.7.1962

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Egashira Y, Sanada H (2003) Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. J Agric Food Chem 51:5534–5539. https://doi.org/10.1021/jf034455u

    Article  CAS  PubMed  Google Scholar 

  14. Anson NM, van den Berg R, Havenaar R et al (2009) Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci 49:296–300. https://doi.org/10.1016/j.jcs.2008.12.001

    Article  CAS  Google Scholar 

  15. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747. https://doi.org/10.1093/ajcn/79.5.727

    Article  CAS  PubMed  Google Scholar 

  16. Lafay S, Gil-Izquierdo A (2008) Bioavailability of phenolic acids. Phytochem Rev 7:301–311. https://doi.org/10.1007/s11101-007-9077-x

    Article  CAS  Google Scholar 

  17. Zhao Z, Egashira Y, Sanada H (2004) Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J Nutr 134:3083–3088. https://doi.org/10.1093/jn/134.11.3083

    Article  CAS  PubMed  Google Scholar 

  18. Donovan JL, Manach C, Faulks RM, Kroon PA (2006) Absorption and metabolism of dietary plant secondary metabolites. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites—occurrence, structure and role in the human diet. Blackwell Publishing Ltd, Oxford, pp 303–351

    Google Scholar 

  19. Malunga LN, Beta T (2016) Isolation and identification of feruloylated arabinoxylan mono- and oligosaccharides from undigested and digested maize and wheat. Heliyon. https://doi.org/10.1016/j.heliyon.2016.e00106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anselmi C, Centini M, Maggiore M et al (2008) Non-covalent inclusion of ferulic acid with α-cyclodextrin improves photo-stability and delivery: NMR and modeling studies. J Pharm Biomed Anal 46:645–652. https://doi.org/10.1016/j.jpba.2007.11.037

    Article  CAS  PubMed  Google Scholar 

  21. Carlotti ME, Sapino S, Ugazio E et al (2008) Photostability of ferulic acid and its antioxidant activity against linoleic acid peroxidation. J Dispers Sci Technol 29:629–640. https://doi.org/10.1080/01932690701757766

    Article  CAS  Google Scholar 

  22. Aceituno-Medina M, Mendoza S, Rodríguez BA et al (2015) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Foods 12:332–341. https://doi.org/10.1016/j.jff.2014.11.028

    Article  CAS  Google Scholar 

  23. Yu D-G, Yang J-M, Branford-White C et al (2010) Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm 400:158–164. https://doi.org/10.1016/j.ijpharm.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  24. Dávila-Guzman NE, Cerino-Córdova FJ, Diaz-Flores PE et al (2012) Equilibrium and kinetic studies of ferulic acid adsorption by amberlite XAD-16. Chem Eng J 183:112–116. https://doi.org/10.1016/j.cej.2011.12.037

    Article  CAS  Google Scholar 

  25. Yang Q, Zhao M, Lin L (2016) Adsorption and desorption characteristics of Adlay bran free phenolics on macroporous resins. Food Chem 194:900–907. https://doi.org/10.1016/j.foodchem.2015.08.070

    Article  CAS  PubMed  Google Scholar 

  26. Kammerer J, Schweizer C, Carle R, Kammerer DR (2011) Recovery and fractionation of major apple and grape polyphenols from model solutions and crude plant extracts using ion exchange and adsorbent resins. Int J Food Sci Technol 46:1755–1767. https://doi.org/10.1111/j.1365-2621.2011.02681.x

    Article  CAS  Google Scholar 

  27. Simon V, Thuret A, Candy L et al (2015) Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites. Chem Eng J 280:748–754. https://doi.org/10.1016/j.cej.2015.06.009

    Article  CAS  Google Scholar 

  28. LANXESS (2011) Product information Lewatit® VP OC 1064 MD PH. https://www.lenntech.com/Data-sheets/Lewatit-VP-OC-1064-MD-PH-L.pdf

  29. Conidi C, Rodriguez-Lopez AD, Garcia-Castello EM, Cassano A (2015) Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep Purif Technol 144:153–161. https://doi.org/10.1016/j.seppur.2015.02.025

    Article  CAS  Google Scholar 

  30. Pinto J, Spínola V, Llorent-Martínez EJ et al (2017) Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Res Int 100(3):404–410. https://doi.org/10.1016/j.foodres.2017.03.044

    Article  CAS  PubMed  Google Scholar 

  31. Flores FP, Singh RK, Kerr WL et al (2014) Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chem 153:272–278. https://doi.org/10.1016/j.foodchem.2013.12.063

    Article  CAS  PubMed  Google Scholar 

  32. Egawa H, Yorifuji T, Sumazaki R et al (2002) Intractable diarrhea after liver transplantation for Byler’s disease: successful treatment with bile adsorptive resin. Liver Transpl 8:714–716. https://doi.org/10.1053/jlts.2002.34384

    Article  PubMed  Google Scholar 

  33. Guo X, Chang R, Hussain MA (2009) Ion-exchange resins as drug delivery carriers. J Pharm Sci 98:3886–3902. https://doi.org/10.1002/jps.21706

    Article  CAS  PubMed  Google Scholar 

  34. Shahidi F, Chandrasekara A (2015) The use of antioxidants in the preservation of cereals and low-moisture foods. In: Shadini F (ed) Handbook of antioxidants for food preservation. Woodhead Publishing, Cambridge, pp 413–432

    Chapter  Google Scholar 

  35. Kammerer DR, Saleh ZS, Carle R, Stanley RA (2007) Adsorptive recovery of phenolic compounds from apple juice. Eur Food Res Technol 224:605–613. https://doi.org/10.1007/s00217-006-0346-5

    Article  CAS  Google Scholar 

  36. Geerkens CH, Matejka AE, Schweiggert RM et al (2015) Optimization of polyphenol recovery from mango peel extracts by assessing food-grade adsorbent and ion exchange resins and adsorption parameters using a D-optimal design. Eur Food Res Technol 241:627–636. https://doi.org/10.1007/s00217-015-2489-8

    Article  CAS  Google Scholar 

  37. Kammerer D, Gajdos Kljusuric J, Carle R, Schieber A (2005) Recovery of anthocyanins from grape pomace extracts (Vitis vinifera L. cv. Cabernet Mitos) using a polymeric adsorber resin. Eur Food Res Technol 220:431–437. https://doi.org/10.1007/s00217-004-1078-z

    Article  CAS  Google Scholar 

  38. Chang X-L, Wang D, Chen B-Y et al (2012) Adsorption and desorption properties of macroporous resins for anthocyanins from the calyx extract of Roselle (Hibiscus sabdariffa L.). J Agric Food Chem 60:2368–2376. https://doi.org/10.1021/jf205311v

    Article  CAS  PubMed  Google Scholar 

  39. Erfurt H, Schuld R, Stürtz M et al. (2014) Antioxidant composition

  40. Casas MP, Soto ML, Díaz-Reinoso B et al (2017) Purification of polyphenol extracts from natural sources—adsorption and membrane technologies. In: Cuevas-Valenzuela J, Vergara-Salinas JR, Pérez-Correa JR (eds) Advances in technologies for producing food-relevant polyphenols. CRC Press, Taylor & Francis, Boca Raton, pp 221–259

    Google Scholar 

  41. Dhal PK, Huval CC, Holmes-Farley SR (2006) Polymeric sequestrants as nonabsorbed human therapeutics. In: Chorghade MS (ed) Drug discovery and development drug discovery, vol 1. Wiley, Hoboken, pp 383–404

    Chapter  Google Scholar 

  42. Charlton-Menys V, Durrington PN (2008) Human cholesterol metabolism and therapeutic molecules. Exp Physiol 93:27–42. https://doi.org/10.1113/expphysiol.2006.035147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge LANXESS, Germany, for providing the resin Lewatit® VP OC 1064 MD PH. David Quintal is also acknowledged for the artwork. This work was part of the master’s dissertation of G.N.M.

Funding

This study was funded by Fundação para a Ciência e a Tecnologia (CQM Project PEstOE/QUI/UI0674/2019, Portuguese Government funds, by Madeira 14–20 Program, project PROEQUIPRAM—Reforço do Investimento em Equipamentos e Infraestruturas Científicas na RAM (M1420-01–0145-FEDER-000008) and by ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, through the project M1420-01–0145-FEDER-000005—Centro de Química da Madeira—CQM + (Madeira 14–20 Program).

Author information

Authors and Affiliations

Authors

Contributions

GNM did the experimental work. VS helped with the chromatographic analyses and with the gastrointestinal digestion simulation, statistical analysis, and manuscript revision. GNM and PCC contributed for the analysis and discussion of results and writing of the manuscript. PCC coordinated the work and did the final revision of the manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Paula C. Castilho.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Compliance with ethics requirements

No ethical issues derive from this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, G.N., Spínola, V. & Castilho, P.C. Release of adsorbed ferulic acid in simulated gastrointestinal conditions. Eur Food Res Technol 246, 1297–1306 (2020). https://doi.org/10.1007/s00217-020-03489-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03489-w

Keywords

Navigation