Skip to main content

Advertisement

Log in

Antimicrobial effect of oxidative technologies in food processing: an overview

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Healthy foods with fresh-like appearances are nowadays demanded by consumers. To satisfy these requirements, the research has been focused on unconventional non-thermal technologies; particularly, in this paper, oxidative technologies (ozone, cold plasma, and ionization) are reviewed. The principles underlying their mechanisms of working, generation methods, and antimicrobial activity are revised. Thanks to their ability to explain a very strong oxidative activity, the effect on microbial reduction has been resulted promising, representing a good starting point for the application in the food industry as alternative technologies for sanitization. Thus, an overview of the application of these technologies in the different food categories is done. Particularly, it has resulted that for the application of ionization technology on food, the research is still in the early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aday MS, Büyükcan MB, Temizkan R, Caner C (2014) Role of ozone concentrations and exposure times in extending shelf life of strawberry. Ozone 36(1):43–56

    Article  CAS  Google Scholar 

  2. Akbas MY, Ölmez H (2007) Effectiveness of organic acid, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. J Sci Food Agric 87(14):2609–2616

    Article  CAS  PubMed  Google Scholar 

  3. Albertos I, Martin-Diana AB, Cullen PJ, Tiwari BK, Ojha KS, Bourke P, Rico D (2019) Shelf-life extension of herring (Clupea harengus) using in-package atmospheric plasma technology. Innov Food Sci Emerg Technol 53:85–91

    Article  CAS  Google Scholar 

  4. Albertos I, Martín-Diana AB, Cullen PJ, Tiwari BK, Ojha SK, Bourke P et al (2017) Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov Food Sci Emerg Technol 44:117–122

    Article  CAS  Google Scholar 

  5. Alexopoulos A, Plessas S, Ceciu S, Lazar V, Mantzourani I, Voidarou C et al (2013) Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce (Lactuca sativa) and green bell pepper (Capsicum annuum). Food Control 30(2):491–496

    Article  CAS  Google Scholar 

  6. Alkawareek MY, Gorman SP, Graham WG, Gilmore BF (2014) Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J Antimicrob Agents 43(2):154–160

    Article  CAS  PubMed  Google Scholar 

  7. Arnold LW, Boothe DH, Mitchell BW (2004) Use of negative air ionization for reducing bacterial pathogens and spores on stainless steel surfaces. J Appl Poultry Res 13(2):200–206

    Article  Google Scholar 

  8. Bartlett D, Faulkner CS, Cook K (1974) Effect of chronic ozone exposure on lung elasticity in young rats. J Appl Physiol 37(1):92–96

    Article  CAS  PubMed  Google Scholar 

  9. Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25(4):626–632

    Article  CAS  PubMed  Google Scholar 

  10. Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov GE, Emanuel DSN (2014) Ozone decomposition. Interdiscip Toxicol 7(2):47–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Baumann AR, Martin SE, Feng H (2009) Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. J Food Prot 72(6):1306–1309

    Article  PubMed  Google Scholar 

  12. Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ, Kogelschatz U, Schoenbach KH, Barker RJ (2004) Non-equilibrium air plasmas at atmospheric pressure. CRC Press, Boca Raton

    Google Scholar 

  13. Beggs CB (2002) A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem Photobiol Sci 1(6):431–437

    Article  CAS  PubMed  Google Scholar 

  14. Beltrán D, Selma MV, Marín A, Gil MI (2005) Ozonated water extends the shelf life of fresh-cut lettuce. J Agric Food Chem 53(14):5654–5663

    Article  PubMed  CAS  Google Scholar 

  15. Benli H, Hafley BS, Keeton JT, Lucia LM, Cabrera-Diaz E, Acuff GR (2008) Biomechanical and microbiological changes in natural hog casings treated with ozone. Meat Sci 79(1):155–162

    Article  CAS  PubMed  Google Scholar 

  16. Benson SW (ed) (1959) Kinetic considerations of efficiency of ozone production in gas discharges. In: Ozone Chemistry and Technology. Advances in chemistry, vol 21. American Chemical Society (ACS) Publications, pp 405–409

  17. Bermúdez-Aguirre D, Wemlinger E, Pedrow P, Barbosa-Cánovas G, Garcia-Perez M (2013) Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34(1):149–157

    Article  CAS  Google Scholar 

  18. Bialoszewski D, Bocian E, Bukowska B, Czajkowska M, Sokól-Leszczyńska B, Tyski S (2010) Antimicrobial activity of ozonated water. Med Sci Monit 16(9):MT71–MT75

    PubMed  Google Scholar 

  19. Bialoszewski D, Pietruczuk-Padzik A, Kalicinska A, Bocian E, Czajkowska M, Bukowska B, Tyski S (2011) Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Med Sci Monit 17(11):BR339–BR344

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F (2006) Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys 39(16):3494–3507

    Article  CAS  Google Scholar 

  21. Boumail A, Salmieri S, Lacroix M (2016) Combined effect of antimicrobial coatings, gamma radiation and negative air ionization with ozone on Listeria innocua, Escherichia coli and mesophilic bacteria on ready-to-eat cauliflower florets. Postharvest Biol Technol 118:134–140

    Article  CAS  Google Scholar 

  22. Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K (2018) The potential of cold plasma for safe and sustainable food production. Trends Biotechnol 36(6):615–626

    Article  CAS  PubMed  Google Scholar 

  23. Broséus R, Vincent S, Aboulfadl K, Daneshvar A, Sauvé S, Barbeau B, Prévost M (2009) Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res 43(18):4707–4717

    Article  PubMed  CAS  Google Scholar 

  24. Cabiscol Català E, Tamarit Sumalla J, Ros Salvador J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    Google Scholar 

  25. Campos CA, Losada V, Rodríguez Ó, Aubourg SP, Barros-Velázquez J (2006) Evaluation of an ozone–slurry ice combined refrigeration system for the storage of farmed turbot (Psetta maxima). Food Chem 97(2):223–230

    Article  CAS  Google Scholar 

  26. Cantalejo MJ, Zouaghi F, Pérez-Arnedo I (2016) Combined effects of ozone and freeze-drying on the shelf-life of broiler chicken meat. LWT - Food Sci Technol 68:400–407

    Article  CAS  Google Scholar 

  27. Cárdenas FC, Andrés S, Giannuzzi L, Zaritzky N (2011) Antimicrobial action and effects on beef quality attributes of a gaseous ozone treatment at refrigeration temperatures. Food Control 22(8):1442–1447

    Article  CAS  Google Scholar 

  28. Casani S, Rouhany M, Knøchel S (2005) A discussion paper on challenges and limitations to water reuse and hygiene in the food industry. Water Res 39(6):1134–1146

    Article  CAS  PubMed  Google Scholar 

  29. Cavalcante MA, Leite Júnior BRC, Tribst AAL, Cristianini M (2013) Improvement of the raw milk microbiological quality by ozone treatment. Int Food Res J 20(4):2017–2021

    Google Scholar 

  30. Chang L, Craik S (2012) Laboratory simulation of the effect of ozone and monochloramine on biofilms in drinking water mains. Ozone 34(4):243–251

    Article  CAS  Google Scholar 

  31. Chauhan N, Kumar P, Tyagi AK, Mailk A (2015) Effect of lemongrass oil vapours and negative air ions on food spoiling microbes. J Basic Appl Eng Res 2(17):1474–1477

    Google Scholar 

  32. Chiang Y-P, Liang Y-Y, Chang C-N, Chao AC (2006) Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere 65:2395–2400

    Article  CAS  PubMed  Google Scholar 

  33. CNSA (2010) Parere del CNSA sul trattamento con ozono dell’aria negli ambienti di stagionatura dei formaggi. Dipartimento Della Sanità Pubblica Veterinaria Della Sicurezza Alimentare e Della Nutrizione. Ministero Della Salute, 1–13. http://www.salute.gov.it/imgs/C_17_pubblicazioni_1514_allegato.pdf

  34. Critzer FJ, Kelly-Wintenmberg K, South SL, Golden DA (2007) Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J Food Prot 70(10):2290–2296

    Article  PubMed  Google Scholar 

  35. Crowe KM, Skonberg D, Bushway A, Baxter S (2012) Application of ozone sprays as a strategy to improve the microbial safety and quality of salmon fillets. Food Control 25(2):464–468

    Article  CAS  Google Scholar 

  36. Crowe KM, Bushway AA, Bushway RJ, Davis-Dentici K, Hazen RA (2007) A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium). Int J Food Microbiol 116(1):25–31

    Article  CAS  PubMed  Google Scholar 

  37. Cullen PJ, Norton T (2012) Ozone sanitisation in the food industry. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Blackwell Publishing Ltd, Oxford, pp 163–176

    Chapter  Google Scholar 

  38. Da Silva LM, Santana MHP, Boodts JFC (2003) Electrochemistry and green chemical processes: electrochemical ozone production. Quim Nova 26(6):880–888

    Article  Google Scholar 

  39. Daniels SL (2002) “On the ionization of air for removal of noxious effluvia” (Air ionization of indoor environments for control of volatile and particulate contaminants with nonthermal plasmas generated by dielectric-barrier discharge). IEEE Trans Plasma Sci 30(4):1471–1481

    Article  CAS  Google Scholar 

  40. Di Renzo GC, Altieri G, D’Erchia L, Lanza G, Strano MC (2005) Effects of gaseous ozone exposure on cold stored orange fruit. Acta Hort 682:1605–1610

    Article  Google Scholar 

  41. Digel I, Artmann AT, Nishikawa K, Cook M, Kurulgan E, Artmann GM (2005) Bactericidal effects of plasma-generated cluster ions. Med Biol Eng Compu 43(6):800–807

    Article  CAS  Google Scholar 

  42. Dosti B, Guzel-Seydim Z, Greene AK (2005) Effectiveness of ozone, heat and chlorine for destroying common food spoilage bacteria in synthetic media and biofilms. Int J Dairy Technol 58(1):19–24

    Article  CAS  Google Scholar 

  43. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R et al (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44(1):013002

    Article  CAS  Google Scholar 

  44. Fabrizio K, Sharma R, Demirci A, Cutter C (2002) Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. Poult Sci 81(10):1598–1605

    Article  CAS  PubMed  Google Scholar 

  45. Fan L, Song J, Hildebrand PD, Forney CF (2002) Interaction of ozone and negative air ions to control micro-organisms. J Appl Microbiol 93(1):144–148

    Article  CAS  PubMed  Google Scholar 

  46. Fan L, Song J, McRae KB, Walker BA, Sharpe D (2007) Gaseous ozone treatment inactivates Listeria innocua in vitro. J Appl Microbiol 103(6):2657–2663

    Article  CAS  PubMed  Google Scholar 

  47. Fawell J (2000) Risk assessment case study—Chloroform and related substances. Food Chem Toxicol 38:S91–S95

    Article  CAS  PubMed  Google Scholar 

  48. FDA (1982) Generally Recognized as Safe (GRAS) status of ozone. Fed Reg 47(215):50209–50210

    Google Scholar 

  49. FDA (1995) Beverages: bottled water. Fed Reg 60(218):57076–57130

    Google Scholar 

  50. FDA (2001) Secondary direct food additives permitted in food for human consumption. Fed Reg 66(138):33829–33830

    Google Scholar 

  51. FDA (2003) Code of federal regulation, title 21. Government Printing Office, USA

    Google Scholar 

  52. Finch GR, Yuen WC, Uibel BJ (1992) Inactivation of Escherichia coli using ozone and ozone hydrogen peroxide. Environ Technol 13(6):571–578

    Article  CAS  Google Scholar 

  53. Fletcher LA, Gaunt LF, Beggs CB, Shepherd SJ, Sleigh PA, Noakes CJ, Kerr KG (2007) Bactericidal action of positive and negative ions in air. BMC Microbiol 7(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Forney CF, Fan L, Hildebrand PD, Song J (2001) Do negative air ions reduce decay of fresh fruits and vegetables? Acta Hort 553:421–424

    Article  CAS  Google Scholar 

  55. Fridman A, Kennedy LA (2004) Plasma physics and engineering. Taylor & Francis, New York

    Book  Google Scholar 

  56. Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D Appl Phys 38(2):R1–R24

    Article  CAS  Google Scholar 

  57. Fridman A, Kennedy LA (2004) Plasma physics and engineering. CRC Press, Boca Rato

    Book  Google Scholar 

  58. Garcia A, Mount JR, Davidson PM (2003) Ozone and chlorine treatment of minimally processed lettuce. J Food Sci 68(9):2747–2751

    Article  CAS  Google Scholar 

  59. Gelman A, Sachs O, Khanin Y, Drabkin V, Glatman AL (2005) Effect of ozone pretreatment on fish storage life at low temperatures. J Food Prot 68(4):778–784

    Article  CAS  PubMed  Google Scholar 

  60. Glowacz M, Colgan R, Rees D (2015) The use of ozone to extend the shelf-life and maintain quality of fresh produce. J Sci Food Agric 95(4):662–671

    Article  CAS  PubMed  Google Scholar 

  61. Gonçalves AA (2009) Ozone: an emerging technology for the seafood industry. Braz Arch Biol Technol 52(6):1527–1539

    Article  Google Scholar 

  62. Gottschall C, Libra JA, Saupe A (eds) (2010) Ozonation of water and wastewater: a practical guide to understanding ozone and its applications, 2nd edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  63. Graham DM, Pariza MW, Glaze WH, Erdman JW, Newell GW, Borzelleca JF (1997) Use of ozone for food processing. Food Technol 51(6):72–76

    Google Scholar 

  64. Greene AK, Güzel-Seydim ZB, Seydim AC (2012) Chemical and physical properties of ozone. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Wiley-Blackwell, Oxford, pp 19–32

    Chapter  Google Scholar 

  65. Gurol C, Ekinci FY, Aslan N, Korachi M (2012) Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol 157(1):1–5

    Article  CAS  PubMed  Google Scholar 

  66. Güzel-Seydim ZB, Bever PI, Greene AK (2004) Efficacy of ozone to reduce bacterial populations in the presence of food components. Food Microbiol 21(4):475–479

    Article  CAS  Google Scholar 

  67. Guzel-Seydim ZB, Greene AK, Seydim AC (2004) Use of ozone in the food industry. LWT - Food Sci Technol 37(4):453–460

    Article  CAS  Google Scholar 

  68. Guzel-Seydim ZB, Wyffels JT, Greene AK, Bodine AB (2000) Removal of dairy soil from heated stainless steel surfaces: use of ozonated water as a prerinse. J Dairy Sci 83(8):1887–1891

    Article  CAS  PubMed  Google Scholar 

  69. Hassenberg K, Fröhling A, Geyer M, Schlüter O, Herppich WB (2008) Ozonated wash water for inhibition of Pectobacterium carotovorum on carrots and the effect on the physiological behaviour of produce. Eur J Hortic Sci 73(1):1611–4426

    Google Scholar 

  70. Hati S, Patel M, Yadav D (2018) Food bioprocessing by non-thermal plasma technology. Curr Opin Food Sci 19:85–91

    Article  Google Scholar 

  71. Heim C, Glas K (2011) Ozone I: characteristics/generation/possible applications. Brew Sci 64:8–12

    Google Scholar 

  72. Hems RS, Gulabivala K, Ng Y-L, Ready D, Spratt DA (2005) An in vitro evaluation of the ability of ozone to kill a strain of Enterococcus faecalis. Int Endod J 38(1):22–29

    Article  CAS  PubMed  Google Scholar 

  73. Hoigné J, Bader H, Haag WR, Staehelin J (1985) Rate constants of reactions of ozone with organic and inorganic compounds in water—III. Inorganic compounds and radicals. Water Res 19(8):993–1004

    Article  Google Scholar 

  74. HSE (2014) Ozone: health hazards and precautionary measures. Guidance Note EH38, 3rd edn. Health and Safety Executive. https://www.hse.gov.uk/pubns/eh38.pdf

  75. Huber MM, Canonica S, Park GY, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5):1016–1024

    Article  CAS  PubMed  Google Scholar 

  76. Hunt NK, Mariñas BJ (1997) Kinetics of Escherichia coli inactivation with ozone. Water Res 31(6):1355–1362

    Article  Google Scholar 

  77. Isbary G, Shimizu T, Li Y-F, Stolz W, Thomas HM, Morfill GE, Zimmermann JL (2013) Cold atmospheric plasma devices for medical issues. Expert Rev Med Devices 10(3):367–377

    Article  CAS  PubMed  Google Scholar 

  78. Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51–57

    Article  CAS  PubMed  Google Scholar 

  79. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kampmann Y, Klingshirn A, Kloft K, Kreyenschmidt J (2009) The application of ionizers in domestic refrigerators for reduction in airborne and surface bacteria. J Appl Microbiol 107(6):1789–1798

    Article  CAS  PubMed  Google Scholar 

  81. Karaca H, Velioglu YS (2007) Ozone applications in fruit and vegetable processing. Food Rev Int 23(1):91–106

    Article  CAS  Google Scholar 

  82. Kayes MM, Critzer FJ, Kelly-Wintenberg K, Roth JR, Montie TC, Golden DA (2007) Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma. Foodborne Pathog Dis 4(1):50–59

    Article  PubMed  Google Scholar 

  83. Khadre MA, Yousef AE, Kim JG (2001) Microbiological aspects of ozone applications in food: a review. J Food Sci 66(9):1242–1252

    Article  CAS  Google Scholar 

  84. Kim C, Hung Y-C (2012) Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone. J Food Sci 77(4):206–211

    Article  CAS  Google Scholar 

  85. Kim J-G, Yousef AE, Chism GW (1999) Use of ozone to inactivate microorganisms on lettuce. J Food Saf 19(1):17–34

    Article  CAS  Google Scholar 

  86. Kim J-S, Lee E-J, Choi EH, Kim Y-J (2014) Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innov Food Sci Emerg Technol 22:124–130

    Article  Google Scholar 

  87. Kim JG (1998) Ozone as an antimicrobial agent in minimally processed foods. The Ohio State University, Columbus

    Google Scholar 

  88. Kim YS, Yoon KY, Park JH, Hwang J (2011) Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria. Sci Total Environ 409(4):748–755

    Article  CAS  PubMed  Google Scholar 

  89. Korachi M, Ozen F, Aslan N, Vannini L, Guerzoni ME, Gottardi D, Ekinci FY (2015) Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. Int Dairy J 42:64–69

    Article  CAS  Google Scholar 

  90. Krueger AP (1969) Preliminary consideration of the biological significance of air ions. Scientia 63:460–476

    Google Scholar 

  91. Kudra T, Mujumdar AS (2009) Advanced drying technologies. CRC Press, Boca Rato

    Book  Google Scholar 

  92. Kuprianoff J (1953) The use of ozone for the cold storage of fruit. Z. Kalentechnik 10:1–4

    Google Scholar 

  93. Labatiuk CW, Belosevic M, Finch GR (1994) Inactivation of Giardia muris using ozone and ozone-hydrogen peroxide. Ozone 16(1):67–78

    Article  CAS  Google Scholar 

  94. Lacombe A, Niemira BA, Gurtler JB, Fan X, Sites J, Boyd G, Chen H (2015) Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiol 46:479–484

    Article  CAS  PubMed  Google Scholar 

  95. Lanita CS, da Silva SB (2008) Use of ozone in industrial cold rooms to control yeasts and moulds during parmesan cheese ripening. Braz J Food Technol 11(3):182–189

    CAS  Google Scholar 

  96. Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2(5):391–400

    Article  CAS  Google Scholar 

  97. Lee J, Deininger RA (2000) Survival of bacteria after ozonation. Ozone 22(1):65–75

    Article  CAS  Google Scholar 

  98. Lee K, Paek KH, Ju WT, Lee Y (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44(3):269–275

    PubMed  Google Scholar 

  99. Li J, Wang X, Yao H, Yao Z, Wang J, Luo Y (1989) Influence of discharge products on post-harvest physiology of fruit. Sixth international symposium on high voltage engineering, New Orleans, LA, USA, 28 August–1 September 1989. https://ucanr.edu/sites/Postharvest_Technology_Center_/files/231948.pdf

  100. Liang Y, Wu Y, Sun K, Chen Q, Shen F, Zhang J et al (2012) Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma. Environ Sci Technol 46(6):3360–3368

    Article  CAS  PubMed  Google Scholar 

  101. Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    Article  CAS  Google Scholar 

  102. Lieberman M, Lichtenberg A (2005) Principles of plasma discharges and materials processing. Wiley, Hoboken

    Book  Google Scholar 

  103. Lunov O, Churpita O, Zablotskii V, Deyneka IG, Meshkovskii IK, Jäger A et al (2015) Non-thermal plasma mills bacteria: scanning electron microscopy observations. Appl Phys Lett 106(5):053703

    Article  CAS  Google Scholar 

  104. Luts A, Salm J (1994) Chemical composition of small atmospheric ions near the ground. J Geophys Res 99(D5):10781

    Article  CAS  Google Scholar 

  105. Luts A, Parts T-E, Hõrraka U, Junninen H, Kulmalab M (2011) Composition of negative air ions as a function of ion age and selected trace gases: mass- and mobility distribution. J Aerosol Sci 42(11):820–838

    Article  CAS  Google Scholar 

  106. Manley TC, Niegowski SJ (1967) Ozone. In: encyclopedia of chemical technology, 2nd edn. Wiley, New York, pp 410–432

    Google Scholar 

  107. Manousaridis G, Nerantzaki A, Paleologos EK, Tsiotsias A, Savvaidis IN, Kontominas MG (2005) Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiol 22(1):1–9

    Article  CAS  Google Scholar 

  108. Marino M, Maifreni M, Baggio A, Innocente N (2018) Inactivation of foodborne bacteria biofilms by aqueous and gaseous ozone. Front Microbiol 9:2024

    Article  PubMed  PubMed Central  Google Scholar 

  109. Marino M, Segat A, Maifreni M, Frigo F, Sepulcri C, Innocente N (2015) Efficacy of ozonation on microbial counts in used brines for cheesemaking. Int Dairy J 50:9–14

    Article  CAS  Google Scholar 

  110. Mendis DA, Rosenberg M, Azam F (2000) A note on the possible electrostatic disruption of bacteria. IEEE Trans Plasma Sci 28(4):1304–1306

    Article  Google Scholar 

  111. Min SC, Roh SH, Niemira BA, Boyd G, Sites JE, Uknalis J, Fan X (2017) In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiol 65:1–6

    Article  CAS  PubMed  Google Scholar 

  112. Misra NN, Patil S, Moiseev T, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) In-package atmospheric pressure cold plasma treatment of strawberries. J Food Eng 125:131–138

    Article  CAS  Google Scholar 

  113. Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3(3–4):159–170

    Article  Google Scholar 

  114. Mitchell BW, King DJ (1994) Effect of negative air ionization on airborne transmission of newcastle disease virus. Avian Dis 38(4):725

    Article  CAS  PubMed  Google Scholar 

  115. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia L (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226(1–2):1–21

    Article  CAS  PubMed  Google Scholar 

  116. Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28(1):41–50

    Article  Google Scholar 

  117. Moore G, Griffith C, Peters A (2000) Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot 63(8):1100–1106

    Article  CAS  PubMed  Google Scholar 

  118. Morandi S, Brasca M, Lodi R, Battelli G (2009) Use of ozone to control Listeria monocytogenes in various types of cheese. Scienza e Tecnica Lattiero-Casearia 60:211–215

    CAS  Google Scholar 

  119. Muhlisin M, Utama DT, Lee JH, Choi JH, Lee SK (2016) Effects of gaseous ozone exposure on bacterial counts and oxidative properties in chicken and duck breast meat. Korean J Food Sci Anim Res 36(3):405–411

    Article  Google Scholar 

  120. Muranyi P, Wunderlich J, Heise M (2007) Sterilization efficiency of a cascaded dielectric barrier discharge. J Appl Microbiol 103(5):1535–1544

    Article  CAS  PubMed  Google Scholar 

  121. Muranyi P, Wunderlich J, Heise M (2008) Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma. J Appl Microbiol 104(6):1659–1666

    Article  CAS  PubMed  Google Scholar 

  122. Mustafa MG (1990) Biochemical basis of ozone toxicity. Free Radical Biol Med 9(3):245–265

    Article  CAS  Google Scholar 

  123. Nagato K, Matsui Y, Miyata T, Yamauchi T (2006) An analysis of the evolution of negative ions produced by a corona ionizer in air. Int J Mass Spectrom 248(3):142–147

    Article  CAS  Google Scholar 

  124. Naito S (2012) Ozone in seafood processing. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Blackwell Publishing Ltd, Oxford, pp 123–136

    Google Scholar 

  125. Naito S, Takahara H (2006) Ozone contribution in food industry in Japan. Ozone 28(6):425–429

    Article  CAS  Google Scholar 

  126. Nicholas R, Dunton P, Tatham A, Fielding L (2013) The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. J Appl Microbiol 115(2):555–564

    Article  CAS  PubMed  Google Scholar 

  127. Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella stanley and Escherichia coli O157:H7 inoculated on Golden Delicious apples. J Food Prot 71(7):1357–1365

    Article  PubMed  Google Scholar 

  128. Norton T, Misiewicz P (2012) Ozone for water treatment and its potential for process water reuse in the food industry. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Blackwell Publishing Ltd, Oxford, pp 177–199

    Chapter  Google Scholar 

  129. Novak JS, Yuan JTC (2003) Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous ozone treatment on beef followed by heat, alkali, or salt stress. J Food Prot 66(3):382–389

    Article  PubMed  Google Scholar 

  130. Noyce JO, Hughes JF (2002) Bactericidal effects of negative and positive ions generated in nitrogen on Escherichia coli. J Electrostat 54(2):179–187

    Article  CAS  Google Scholar 

  131. Noyce JO, Hughes JF (2003) Bactericidal effects of negative and positive ions generated in nitrogen on starved Pseudomonas veronii. J Electrostat 57(1):49–58

    Article  CAS  Google Scholar 

  132. Oehlschlaeger HF (1978) Reactions of ozone with organic compounds. In: Rice RG, Cotruvo JA (eds) Ozone/chlorine dioxide oxidation products of organic material. Ozone Press International, Cleveland, pp 20–37

    Google Scholar 

  133. Okpala COR (2014) Investigation of quality attributes of ice-stored Pacific white shrimp (Litopenaeus vannamei) as affected by sequential minimal ozone treatment. LWT - Food Sci Technol 57(2):538–547

    Article  CAS  Google Scholar 

  134. Ölmez H, Akbas MY (2009) Optimization of ozone treatment of fresh-cut green leaf lettuce. J Food Eng 90(4):487–494

    Article  CAS  Google Scholar 

  135. Palou L, Crisosto CH, Smilanick JL, Adaskaveg JE, Zoffoli JP (2002) Effects of continuous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. Postharvest Biol Technol 24(1):39–48

    Article  CAS  Google Scholar 

  136. Pandiselvam R, Subhashini S, Banuu Priya EP, Kothakota A, Ramesh SV, Shahir S (2019) Ozone based food preservation: a promising green technology for enhanced food safety. Ozone 41(1):17–34

    Article  CAS  Google Scholar 

  137. Pangloli P, Hung Y-C (2013) Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 32(2):621–625

    Article  CAS  Google Scholar 

  138. Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Jiménez A, Bourke P, Cullen PJ (2014) Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innov Food Sci Emerg Technol 21:107–113

    Article  CAS  Google Scholar 

  139. Parish ME, Beuchat LR, Suslow TV, Harris LJ, Garrett EH, Farber JN, Busta FF (2003) Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr Rev Food Sci Food Saf 2(s1):161–173

    Article  Google Scholar 

  140. Park J-S, Sung B-J, Yoon K-S, Jeong C-S (2016) The bactericidal effect of an ionizer under low concentration of ozone. BMC Microbiol 16(1):173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pascual A, Llorca I, Canut A (2007) Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci Technol 18:29–35

    Article  CAS  Google Scholar 

  142. Pinto AT, Schmidt V, Raimundo SA, Raihmer F (2007) Use of ozone to control fungi in a cheese ripening room. Acta Scientiae Veterinariae 35:333–337

    Article  Google Scholar 

  143. Pisarenko AN, Stanford BD, Yan D, Gerrity D, Snyder SA (2012) Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Res 46(2):316–326

    Article  CAS  PubMed  Google Scholar 

  144. Pohlman FW (2012) Ozone in meat processing. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Blackwell Publishing Ltd, Oxford, pp 123–136

    Chapter  Google Scholar 

  145. Poole K (2012) Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 20(5):227–234

    Article  CAS  PubMed  Google Scholar 

  146. Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME, Guarnieri A (2010) Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J Food Eng 100(1):125–132

    Article  CAS  Google Scholar 

  147. Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61(9):3471–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Restuccia C, Lombardo S, Pandino G, Licciardello F, Muratore G, Mauromicale G (2014) An innovative combined water ozonisation/O3-atmosphere storage for preserving the overall quality of two globe artichoke cultivars. Innov Food Sci Emerg Technol 21:82–89

    Article  CAS  Google Scholar 

  149. Rice RG (2012) Health and safety aspects of ozone processing. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Wiley-Blackwell, Oxford, pp 265–288

    Chapter  Google Scholar 

  150. Rice RG, Robson CM, Miller GW, Hill AG (1981) Uses of ozone in drinking water treatment. J Am Water Works Assoc 73(1):44–57

    Article  CAS  Google Scholar 

  151. Rocculi P, Romani S, Dalla Rosa M, Tonutti P, Bacci A (2005) Influence of ozonated water on the structure and some quality parameters of whole strawberries in modified atmosphere packaging (MAP). Acta Hort 682:1781–1788

    Article  Google Scholar 

  152. Rodgers SL, Cash JN, Siddiq M, Ryser ET (2004) A Comparison of different chemical sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes in solution and on apples, lettuce, strawberries, and cantaloupe. J Food Prot 67(4):721–731

    Article  CAS  PubMed  Google Scholar 

  153. Rossow M, Ludewig M, Braun PG (2018) Effect of cold atmospheric pressure plasma treatment on inactivation of Campylobacter jejuni on chicken skin and breast fillet. LWT - Food Sci Technol 91:265–270

    Article  CAS  Google Scholar 

  154. Roth JR (1995) Industrial plasma engineering. In: Principles, vol 1. IOP, Philadelphia, pp 1–538

    Book  Google Scholar 

  155. Rowan NJ, Espie S, Harrower J, Anderson JG, Marsili L, MacGregor SJ (2007) Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water. J Food Prot 70(12):2805–2810

    Article  CAS  PubMed  Google Scholar 

  156. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 14(4):491–509

    Article  Google Scholar 

  157. Schneider J, Baumgärtner KM, Feichtinger J, Krüger J, Muranyi P, Schulz A et al (2005) Investigation of the practicability of low-pressure microwave plasmas in the sterilisation of food packaging materials at industrial level. Surf Coat Technol 200(1–4):962–966

    Article  CAS  Google Scholar 

  158. Scholtz V, Julák J, Kříha V (2010) The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process Polym 7(3–4):237–243

    Article  CAS  Google Scholar 

  159. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Nonthermal plasma — A tool for decontamination and disinfection. Biotechnol Adv 33(6):1108–1119

    Article  CAS  PubMed  Google Scholar 

  160. Segat A, Misra NN, Cullen PJ, Innocente N (2015) Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innov Food Sci Emerg Technol 29:247–254

    Article  CAS  Google Scholar 

  161. Segat A, Misra NN, Cullen PJ, Innocente N (2016) Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process 98:181–188

    Article  CAS  Google Scholar 

  162. Sehested K, Corfitzen H, Holcman J, Fischer CH, Hart EJ (1991) The primary reaction in the decomposition of ozone in acidic aqueous solutions. Environ Sci Technol 25(9):1589–1596

    Article  CAS  Google Scholar 

  163. Seo KH, Mitchell BW, Holt PS, Gast RK (2001) Bactericidal effects of negative air ions on airborne and surface Salmonella enteritidis from an artificially generated aerosol. J Food Prot 64(1):113–116

    Article  CAS  PubMed  Google Scholar 

  164. Serra R, Abrunhosa L, Kozakiewicz Z, Venâncio A, Lima N (2003) Use of ozone to reduce molds in a cheese ripening room. J Food Prot 66(12):2355–2358

    Article  PubMed  Google Scholar 

  165. Sharpe D, Fan L, McRae K, Walker B, MacKay R, Doucette C (2009) Effects of ozone treatment on Botrytis cinerea and Sclerotinia sclerotiorum in relation to horticultural product quality. J Food Sci 74(6):M250–M257

    Article  CAS  PubMed  Google Scholar 

  166. Sheelamary M, Muthukumar M (2011) Effectiveness of ozone in inactivating Listeria monocytogenes from milk samples. World J Young Res 1(3):40–44

    Google Scholar 

  167. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT - Food Sci Technol 43(4):573–583

    Article  CAS  Google Scholar 

  168. Skalny JD, Mikoviny T, Matejcik S, Mason NJ (2004) An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air. Int J Mass Spectrom 233(1–3):317–324

    Article  CAS  Google Scholar 

  169. Skog LJ, Chu CL (2001) Effect of ozone on qualities of fruits and vegetables in cold storage. Can J Plant Sci 81(4):773–778

    Article  CAS  Google Scholar 

  170. Song Y, Fan X (2020) Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella Typhimurium and Listeria innocua on grape tomatoes, apples, cantaloupe and romaine lettuce. Food Microbiol 87:103391

    Article  PubMed  CAS  Google Scholar 

  171. Srey S, Jahid IK, Ha S-D (2013) Biofilm formation in food industries: a food safety concern. Food Control 31(2):572–585

    Article  Google Scholar 

  172. Staehelin J, Hoigne J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19(12):1206–1213

    Article  CAS  PubMed  Google Scholar 

  173. Stewart PS, Raquepas JB (1995) Implications of reaction-diffusion theory for the disinfection of microbial biofilms by reactive antimicrobial agents. Chem Eng Sci 50(19):3099–3104

    Article  CAS  Google Scholar 

  174. Stivarius MR, Pohlman FW, McElyea KS, Apple JK (2002) Microbial, instrumental color and sensory color and odor characteristics of ground beef produced from beef trimmings treated with ozone or chlorine dioxide. Meat Sci 60(3):299–305

    Article  CAS  PubMed  Google Scholar 

  175. Tachikawa M, Yamanaka K (2014) Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide. Water Res 64:94–101

    Article  CAS  PubMed  Google Scholar 

  176. Tammet H (1997) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  177. Tanimura Y (1997) Inhibition of microbial growth using negative air ions. J Antibact Antifung Agents 25:625–631

    Google Scholar 

  178. Tapp C, Rice RG (2012) Generation and control of ozone. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Wiley-Blackwell, Oxford, pp 33–54

    Chapter  Google Scholar 

  179. Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol 33:225–233

    Article  CAS  Google Scholar 

  180. Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37(8):1976–1982

    Article  CAS  PubMed  Google Scholar 

  181. Thanosmsub B, Anupunpisit V, Chanphetch S, Watcharachaipong T, Poonkhum R, Srisukonth C (2002) Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J Gen Appl Microbiol 48(4):193–199

    Article  Google Scholar 

  182. Thirumdas R, Sarangapani C, Annapure US (2014) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10(1):1–11

    Article  Google Scholar 

  183. Tiwari BK, O’Donnell CP, Cullen PJ (2009) Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci Technol 20(3–4):137–145

    Article  CAS  Google Scholar 

  184. Tiwari BK, Rice RG (2012) Regulatory and legislative issues. In: O’Donnell C, Tiwari BK, Cullen PJ, Rice RG (eds) Ozone in food processing. Wiley-Blackwell, Oxford, pp 19–32

    Google Scholar 

  185. Torlak E, Sert D (2013) Inactivation of Cronobacter by gaseous ozone in milk powders with different fat contents. Int Dairy J 32(2):121–125

    Article  CAS  Google Scholar 

  186. Tseng S, Abramzon N, Jackson JO, Lin W-J (2012) Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Appl Microbiol Biotechnol 93(6):2563–2570

    Article  CAS  PubMed  Google Scholar 

  187. Tuffi R, Lovino R, Canese S, Cafiero LM, Vitali F (2012) Effects of exposure to gaseous ozone and negative air ions on control of epiphytic flora and the development of Botrytis cinerea and Penicillium expansum during cold storage of strawberries and tomatoes. Ital J Food Sci 24:102–114

    CAS  Google Scholar 

  188. Tyagi AK, Malik A (2010) Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens. Int J Food Microbiol 143(3):205–210

    Article  CAS  PubMed  Google Scholar 

  189. Tyagi AK, Malik A (2012) Bactericidal action of lemon grass oil vapors and negative air ions. Innov Food Sci Emerg Technol 13:169–177

    Article  CAS  Google Scholar 

  190. Tyagi AK, Nirala BK, Malik A, Singh K (2008) The effect of negative air ion exposure on Escherichia coli and Pseudomonas fluorescens. J Environ Sci Health Part A 43(7):694–699

    Article  CAS  Google Scholar 

  191. Tzortzakis N, Chrysargyris A (2017) Postharvest ozone application for the preservation of fruits and vegetables. Food Rev Int 33(3):270–315

    Article  CAS  Google Scholar 

  192. Uhm HS, Hong YC, Shin DH (2006) A microwave plasma torch and its applications. Plasma Sources Sci Technol 15(2):S26–S34

    Article  Google Scholar 

  193. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109(4):1117–1131

    Article  PubMed  Google Scholar 

  194. Vieno NM, Harkki H, Tuhkanen T, Kronberg L (2007) Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol 41(14):5077–5084

    Article  CAS  PubMed  Google Scholar 

  195. Voronov A (2008) New generation of low pressure mercury lamps for producing ozone. Ozone 30(6):395–397

    Article  CAS  Google Scholar 

  196. Wan Z, Chen Y, Pankaj SK, Keener KM (2017) High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis contamination on egg shell. LWT - Food Sci Technol 76:124–130

    Article  CAS  Google Scholar 

  197. Wang RX, Nian WF, Wu HY, Feng HQ, Zhang K, Zhang J et al (2012) Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. Eur Phy J D 66(10):276

    Article  CAS  Google Scholar 

  198. Wang T, Reckhow DA (2016) Spectrophotometric method for determination of ozone residual in water using ABTS: 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulfonate). Ozone 38(5):373–381

    Article  CAS  Google Scholar 

  199. Wang Y-H, Chen Q-Y (2013) Anodic materials for electrocatalytic ozone generation. Int J Electrochem 2013(4):1–7

    Google Scholar 

  200. Wu CC, Lee GWM (2004) Oxidation of volatile organic compounds by negative air ions. Atmos Environ 38(37):6287–6295

    Article  CAS  Google Scholar 

  201. Wu CC, Lee GWM, Yang S, Yu KP, Lou CL (2006) Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci Total Environ 370(1):245–253

    Article  CAS  PubMed  Google Scholar 

  202. Xu L, Garner AL, Tao B, Keener KM (2017) Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Technol 10(10):1778–1791

    Article  CAS  Google Scholar 

  203. Yong HI, Kim H-J, Park S, Alahakoon AU, Kim K, Choe W, Jo C (2015) Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiol 46:46–50

    Article  CAS  PubMed  Google Scholar 

  204. Youm H-J, Jang J-W, Kim K-R, Kim H-J, Jeon E-H, Park E-K et al (2004) Effect of chemical treatment with citric acid or ozonated water on microbial growth and polyphenoloxidase activity in lettuce and cabbage. Prev Nutr Food Sci 9(2):121–125

    Article  CAS  Google Scholar 

  205. Young SB, Setlow P (2004) Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. J Appl Microbiol 96(5):1133–1142

    Article  CAS  PubMed  Google Scholar 

  206. Yuk H-G, Yoo M-Y, Yoon J-W, Moon K-D, Marshall DL, Oh D-H (2006) Effect of combined ozone and organic acid treatment for control of Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. J Food Sci 71(3):M83–M87

    Article  CAS  Google Scholar 

  207. Zaslowsky JA, Urbach HB, Leighton F, Wnuk RJ, Wojtowicz JA (1960) The kinetics of the homogeneous gas phase thermal decomposition of ozone. J Am Chem Soc 82(11):2682–2686

    Article  CAS  Google Scholar 

  208. Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116

    Article  CAS  PubMed  Google Scholar 

  209. Ziuzina D, Misra NN, Cullen PJ, Keener K, Mosnier JP, Vilaró I et al (2016) Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Medicine 6(3–4):397–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Maifreni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contains any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baggio, A., Marino, M., Innocente, N. et al. Antimicrobial effect of oxidative technologies in food processing: an overview. Eur Food Res Technol 246, 669–692 (2020). https://doi.org/10.1007/s00217-020-03447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03447-6

Keywords

Navigation