Skip to main content
Log in

Convergence to a Lévy Process in the Skorohod \({{\mathcal {M}}}_1\) and \({{\mathcal {M}}}_2\) Topologies for Nonuniformly Hyperbolic Systems, Including Billiards with Cusps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove convergence to a Lévy process for a class of dispersing billiards with cusps. For such examples, convergence to a stable law was proved by Jung and Zhang. For the corresponding functional limit law, convergence is not possible in the usual Skorohod \({{\mathcal {J}}}_1\) topology. Our main results yield elementary geometric conditions for convergence (i) in \({{\mathcal {M}}}_1\), (ii) in \({{\mathcal {M}}}_2\) but not \({{\mathcal {M}}}_1\). In general, we show for a large class of nonuniformly hyperbolic systems how to deduce functional limit laws once convergence to the corresponding stable law is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In [30], it is assumed in addition that the trajectory running out of the cusp along the s-axis hits \(\Gamma _3\) perpendicularly, but this was only done for convenience and is not present in [29].

  2. Our definitions differ from those in [30] by constant factors, leading to simpler formulas in Sect. 8.

  3. The hypothesis “exponentially continued fraction mixing” in [46, Corollary 4.1] is automatic for full-branch Gibbs–Markov maps (see the discussion immediately after [46, Example 4.1]).

References

  1. Aaronson, J., Denker, M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1, 193–237 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Avram, F., Taqqu, M.S.: Weak convergence of sums of moving averages in the \(\alpha \)-stable domain of attraction. Ann. Probab. 20, 483–503 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Bálint, P., Chernov, N., Dolgopyat, D.: Limit theorems for dispersing billiards with cusps. Commun. Math. Phys. 308, 479–510 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bálint, P., Gouëzel, S.: Limit theorems in the stadium billiard. Commun. Math. Phys. 263, 461–512 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bartumeus, F., Levin, S.A.: Fractal reorientation clocks: linking animal behavior to statistical patterns of search. Proc. Natl. Acad. Sci. USA 105, 19072–19077 (2008)

    ADS  Google Scholar 

  6. Basrak, B., Krizmanić, D.: A limit theorem for moving averages in the \(\alpha \)-stable domain of attraction. Stoch. Process. Appl. 124, 1070–1083 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Basrak, B., Krizmanić, D., Segers, J.: A functional limit theorem for dependent sequences with infinite variance stable limits. Ann. Probab. 40, 2008–2033 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  9. Bruin, H., Luzzatto, S., van Strien, S.: Decay of correlations in one-dimensional dynamics. Ann. Sci. École Norm. Sup. 36, 621–646 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Bruin, H., Terhesiu, D.: Upper and lower bounds for the correlation function via inducing with general return times. Ergod. Theory Dyn. Syst. 38, 34–62 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Bunimovich, L.A., Sinaĭ, Y.G.: Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78, 479–497 (1980/81)

  12. Bunimovich, L.A., Sinaĭ, Y.G., Chernov, N.I.: Statistical properties of two-dimensional hyperbolic billiards. Uspekhi Mat. Nauk 46, 43–92 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19–42 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Chernov, N., Markarian, R.: Chaotic Billiards. Mathematical Surveys and Monographs, vol. 127. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  16. Chernov, N., Markarian, R.: Dispersing billiards with cusps: slow decay of correlations. Commun. Math. Phys. 270, 727–758 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Chernov, N., Zhang, H.-K.: A family of chaotic billiards with variable mixing rates. Stoch. Dyn. 5, 535–553 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Chernov, N.I., Zhang, H.-K.: Billiards with polynomial mixing rates. Nonlinearity 18, 1527–1553 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  19. De Simoi, J., Tóth, I.P.: An expansion estimate for dispersing planar billiards with corner points. Ann. Henri Poincaré 15, 1223–1243 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Doob, J.L.: Stochastic Processes. Wiley Classics Library. Wiley, New York (1990). Reprint of the 1953 original. A Wiley-Interscience Publication

    Google Scholar 

  21. Eagleson, G.K.: Some simple conditions for limit theorems to be mixing. Teor. Verojatnost. i Primenen 21, 653–660 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Gaspard, P., Wang, X.-J.: Sporadicity: between periodic and chaotic dynamical behaviors. Proc. Natl. Acad. Sci. USA 85, 4591–4595 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Gordin, M.I.: The central limit theorem for stationary processes. Sov. Math. Dokl. 10, 1174–1176 (1969)

    MATH  Google Scholar 

  24. Gouëzel, S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128, 82–122 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Gouëzel, S.: Statistical properties of a skew product with a curve of neutral points. Ergod. Theory Dyn. Syst. 27, 123–151 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Gouëzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs–Markov maps. Isr. J. Math. 180, 1–41 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Jakubowski, A.: The Skorokhod space in functional convergence: a short introduction. In: International Conference: Skorokhod Space. 50 years on, 17–23 June 2007, Kyiv, Ukraine, Part I, s. 11–18 (2007)

  28. Jung, P., Melbourne, I., Pène, F., Varandas, P., Zhang, H.-K.: Necessary and sufficient condition for \({\cal{M}}_2\)-convergence to a Lévy process for billiards with cusps at flat points. Preprint arXiv:1902.08958 (2019)

  29. Jung, P., Pène, F., Zhang, H.-K.: Convergence to \(\alpha \)-stable Lévy motion for chaotic billiards with several cusps at flat points. Preprint arXiv:1809.08021 (2018)

  30. Jung, P., Zhang, H.-K.: Stable laws for chaotic billiards with cusps at flat points. Ann. Henri Poincaré 19, 3815–3853 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Klages, R., Gallegos, S., Solanpää, J., Sarvilahti, M., Räsänen, E.: Normal and anomalous diffusion in soft Lorentz gases. Phys. Rev. Lett. 122, 064102 (2019)

    ADS  Google Scholar 

  32. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19, 671–685 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Lorentz, H.: The motion of electrons in metallic bodies. Proc. Amst. Acad. 7, 438–453 (1905)

    Google Scholar 

  34. Markarian, R.: Billiards with polynomial decay of correlations. Ergod. Theory Dyn. Syst. 24, 177–197 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Melbourne, I., Nicol, M.: Almost sure invariance principle for nonuniformly hyperbolic systems. Commun. Math. Phys. 260, 131–146 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Melbourne, I., Török, A.: Statistical limit theorems for suspension flows. Isr. J. Math. 144, 191–209 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Melbourne, I., Zweimüller, R.: Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. Ann Inst. H. Poincaré (B) Probab. Stat. 51, 545–556 (2015)

    ADS  MATH  Google Scholar 

  38. Metzler, R., Jeon, J.-H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014)

    Google Scholar 

  39. Podobnik, B., Valentinc̆ic̆, A., Horvatić, D., Stanley, H.E.: Asymmetric Lévy flight in financial ratios. Proc. Natl. Acad. Sci. USA 108, 17883–17888 (2011)

    ADS  Google Scholar 

  40. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    ADS  MathSciNet  Google Scholar 

  41. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  42. Sinaĭ, Y.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat. Nauk 25, 141–192 (1970)

    MathSciNet  MATH  Google Scholar 

  43. Skorohod, A.V.: Limit theorems for stochastic processes. Teor. Veroyatnost. i Primenen. 1, 289–319 (1956)

    MathSciNet  Google Scholar 

  44. Solomon, T.H., Weeks, E.R., Swinney, H.L.: Chaotic advection in a two-dimensional flow: Lévy flights and anomalous diffusion. Physica D 76, 70–84 (1994)

    ADS  MATH  Google Scholar 

  45. Thaler, M.: A limit theorem for the Perron–Frobenius operator of transformations on \([0,1]\) with indifferent fixed points. Isr. J. Math. 91, 111–127 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Tyran-Kamińska, M.: Weak convergence to Lévy stable processes in dynamical systems. Stoch. Dyn. 10, 263–289 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Whitt, W.: Stochastic-Process Limits. Springer Series in Operations Research. Springer, New York (2002). An introduction to stochastic-process limits and their application to queues

    Google Scholar 

  48. Young, L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147, 585–650 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Young, L.-S.: Recurrence times and rates of mixing. Isr. J. Math. 110, 153–188 (1999)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, H.-K.: Decay of correlations for billiards with flat points II: cusps effect. Dynamical Systems, Ergodic Theory, and Probability: In Memory of Kolya Chernov. Contemporary Mathematics, vol. 698. American Mathematical Society, Providence, pp. 287–316 (2017)

  51. Zweimüller, R.: Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 11, 1263–1276 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Zweimüller, R.: Mixing limit theorems for ergodic transformations. J. Theor. Probab. 20, 1059–1071 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of IM was supported in part by a European Advanced Grant StochExtHomog (ERC AdG 320977) and by CNPq (Brazil) through PVE Grant Number 313759/2014-6. We are grateful to Adam Jakubowski for pointing out reference [6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Melbourne.

Additional information

Communicated by C. Liverani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Inducing Stable Laws in Both Directions

We assume the set up from Sect. 2.1 with measure-preserving transformations f, \(F=f^\tau \) and \({{\hat{f}}}\) on probability spaces \((X,\mu _X)\), \((Y,\mu _Y)\) and \((\Delta ,\mu _\Delta )\) respectively. Let \(\pi :\Delta \rightarrow X\) be the measure-preserving semiconjugacy \(\pi (y,\ell )=f^\ell y\) and set \({\bar{\tau }}=\int _Y\tau \,d\mu _Y\). We assume in addition that the probability measures \(\mu _X\), \(\mu _Y\), \(\mu _\Delta \) are ergodic.

In the following result, based on [25, 36], we relate limit theorems on X and Y.

Theorem A.1

Let \(V\in L^1(X)\) with \(\int _X V\,d\mu _X=0\). Define the induced observable

$$\begin{aligned} \textstyle V^Y:Y\rightarrow {{\mathbb {R}}},\qquad V^Y=\sum _{\ell =0}^{\tau -1}V\circ f^\ell , \end{aligned}$$

and the Birkhoff sums

$$\begin{aligned} \textstyle V_n=\sum _{j=0}^{n-1}V\circ f^j, \qquad V^Y_n=\sum _{j=0}^{n-1}V^Y\circ F^j, \qquad \tau _n=\sum _{j=0}^{n-1}\tau \circ F^j, \quad n\ge 1. \end{aligned}$$

Let G be a random variable. Let \(b_n>0\) be a sequence with \(b_n\rightarrow \infty \), such that \(\inf _{n\ge 1} b_n/b_{[{\bar{\tau }}^{-1}n+cb_n]}>0\) for each \(c>0\). Assume that \(b_n^{-1}(\tau _n-n{\bar{\tau }})\rightarrow _p 0\) as \(n\rightarrow \infty \). Then the following are equivalent:

  1. (a)

    \(b_n^{-1}V_n\rightarrow _d G\) on \((X,\mu _X)\) as \(n\rightarrow \infty \).

  2. (b)

    \(b_n^{-1}V^Y_{[n/{\bar{\tau }}]}\rightarrow _d G\) on \((Y,\mu _Y)\) as \(n\rightarrow \infty \).

Remark A.2

It is a special case of [25, Theorem A.1] that (b) implies (a). Moreover, instead of condition \(b_n^{-1}(\tau _n-n{\bar{\tau }})\rightarrow _p0\) it suffices that \(b_n^{-1}(\tau _n-n{\bar{\tau }})\) is tight in [25, Theorem A.1].

Proof

Note that

$$\begin{aligned} \int _Y|V^Y|\,d\mu _Y\le \int _Y\sum _{\ell =0}^{\tau -1}|V\circ f^\ell |\,d\mu _Y&=\int _Y\sum _{\ell =0}^{\tau (y)-1}|V\circ \pi (y,\ell )|\,d\mu _Y(y) \\&= {\bar{\tau }}\int _\Delta |V|\circ \pi \,d\mu _\Delta = {\bar{\tau }}\int _X |V|\,d\mu _X<\infty . \end{aligned}$$

So \(V^Y\in L^1(Y)\) and similarly \(\int _Y V^Y\,d\mu _Y=0\).

Define \({{\widehat{V}}}=V\circ \pi :\Delta \rightarrow {{\mathbb {R}}}\) and \({{\widehat{V}}}_n=\sum _{j=0}^{n-1}{{\widehat{V}}}\circ {{\hat{f}}}^j\). Since \(\pi \) is a measure-preserving semiconjugacy, condition (a) is equivalent to

  • (\(\hbox {a}'\)) \(b_n^{-1}{{\widehat{V}}}_n\rightarrow _d G\) on \((\Delta ,\mu _\Delta )\) as \(n\rightarrow \infty \).

Note that \(\mu _Y\) can be viewed as a probability measure on \(\Delta \) supported on Y. As such, \(\mu _Y\ll \mu _\Delta \). By Remark 3.3, we obtain that condition (\(\hbox {a}'\)) is equivalent to

  • (\(\hbox {a}''\)) \(b_n^{-1}{{\widehat{V}}}_n\rightarrow _d G\) on \((Y,\mu _Y)\) as \(n\rightarrow \infty \).

The lap number \(N_n:Y\rightarrow {{\mathbb {Z}}}^+\) is defined by the relation

$$\begin{aligned} \tau _{N_n(y)}(y)\le n < \tau _{N_n(y)+1}(y). \end{aligned}$$

For initial conditions \(y\in Y\), we write

$$\begin{aligned} {{\widehat{V}}}_n(y)=V^Y_{N_n(y)}(y)+H({{\hat{f}}}^ny), \end{aligned}$$

where \(H:\Delta \rightarrow {{\mathbb {R}}}\) is given by \(H(y,\ell )=\sum _{\ell '=0}^{\ell -1}{{\widehat{V}}}(y,\ell ')\). Now

$$\begin{aligned} \mu _Y(y\in Y:b_n^{-1}|H({{\hat{f}}}^ny)|\ge a)&={\bar{\tau }} \mu _\Delta (y\in Y:b_n^{-1}|H({{\hat{f}}}^ny)|\ge a) \\&\le {\bar{\tau }} \mu _\Delta (x\in \Delta :b_n^{-1}|H({{\hat{f}}}^nx)|\ge a) \\&= {\bar{\tau }} \mu _\Delta (x\in \Delta :b_n^{-1}|H(x)|\ge a)\rightarrow 0 \end{aligned}$$

as \(n\rightarrow \infty \) since H is measurable. Hence condition (a\(''\)) is equivalent to

  • (\(\hbox {a}'''\)) \(b_n^{-1}V^Y_{N_n}\rightarrow _d G\) on \((Y,\mu _Y)\) as \(n\rightarrow \infty \).

It remains to prove that conditions (a\('''\)) and (b) are equivalent. In other words, we must show that \(b_n^{-1}(V^Y_{N_n}-V^Y_{[n/{\bar{\tau }}]})\rightarrow _p0\) on \((Y,\mu _Y)\).

We recall some properties of the lap number. By the ergodic theorem, \(\lim _{n\rightarrow \infty }n^{-1}N_n= {\bar{\tau }}^{-1}\) a.e. Also, \(\tau _k\le n\) if and only if \(N_n\ge k\). Let \(c>0\) and set \(k=k(n)=[n/{\bar{\tau }}+cb_n]\). A calculation shows that if \(b_n^{-1}|N_n-n/{\bar{\tau }}|>c\) then \(b_n^{-1}|\tau _k-k{\bar{\tau }}|\ge c{\bar{\tau }}+O(b_n^{-1})\), so \(b_k^{-1}|\tau _k-k{\bar{\tau }}|\ge cb_k^{-1}b_n{\bar{\tau }}+O(b_k^{-1})\). It follows from the assumptions on \(\tau _n\) and \(b_n\) that

$$\begin{aligned} \mu _Y\big (b_k^{-1}|\tau _k-k{\bar{\tau }}|\ge cb_k^{-1}b_n{\bar{\tau }}+O(b_k^{-1})\big )\rightarrow 0 \quad \hbox { as}\ n\rightarrow \infty , \end{aligned}$$

and hence that

$$\begin{aligned} b_n^{-1}(N_n-[n/{\bar{\tau }}])\rightarrow _p 0\quad \text {as }n\rightarrow \infty . \end{aligned}$$
(A.1)

Passing to the natural extension, we can suppose without loss that F is invertible. For \(n\le -1\), we write \(V^Y_n=\sum _{j=n}^{-1}V^Y\circ F^j\). Then

$$\begin{aligned} V^Y_{N_n(y)}(y)-V^Y_{[n/{\bar{\tau }}]}(y)= V^Y_{{{\widetilde{N}}}_n(y)}(F^{[n/{\bar{\tau }}]}y) \quad \text {where}\quad {{\widetilde{N}}}_n(y)=N_n(y)-[n/{\bar{\tau }}]. \end{aligned}$$

Since F is measure-preserving, it suffices to show that \(b_n^{-1}V^Y_{{{\widetilde{N}}}_n}\rightarrow _p0\).

By the ergodic theorem, \(n^{-1}V^Y_n\rightarrow 0\) a.e. and hence in probability as \(n\rightarrow \pm \infty \). Let \(\epsilon >0\). We can choose \({{\widetilde{Y}}}\subset Y\) with \(\mu _Y({{\widetilde{Y}}})>1-\epsilon \) and \(N_0\ge 1\) such that \(|n^{-1}V^Y_n|<\epsilon \) on \({{\widetilde{Y}}}\) for all \(|n|\ge N_0\).

For each \(n\ge 1\), define

$$\begin{aligned} Y_n'=\{y\in Y:|{{\widetilde{N}}}_n(y)|\le N_0\}, \qquad Y_n''=\{y\in Y:|{{\widetilde{N}}}_n(y)|> N_0\}. \end{aligned}$$

For \(y\in Y_n'\), we have \(|V^Y_{{{\widetilde{N}}}_n(y)}|\le \Psi \), where \(\Psi (y)=\sum _{j=-N_0}^{N_0-1}|V^Y(F^jy)|\). Note that \(|\Psi |_1\le 2N_0|V^Y|_1<\infty \), so

$$\begin{aligned} \mu _Y(y\in Y_n':|b_n^{-1}V^Y_{{{\widetilde{N}}}_n(y)}(y)|>\epsilon )&\le \mu _Y(b_n^{-1}\Psi >\epsilon )<\epsilon \end{aligned}$$

for n sufficiently large.

For \(y\in Y_n''\cap {{\widetilde{Y}}}\), we have \(\Big |\frac{1}{|{{\widetilde{N}}}_n|}V^Y_{{{\widetilde{N}}}_n}\Big |<\epsilon \), and hence \(|b_n^{-1}V^Y_{{{\widetilde{N}}}_n(y)}|< \epsilon b_n^{-1}|{{\widetilde{N}}}_n|\), so that

$$\begin{aligned} \mu _Y(y\in Y_n'':|b_n^{-1}V^Y_{{{\widetilde{N}}}_n(y)}(y)|\ge \epsilon )&\le \mu _Y(b_n^{-1}|{{\widetilde{N}}}_n|\ge 1) + \epsilon . \end{aligned}$$

By (A.1), \(b_n^{-1}|{{\widetilde{N}}}_n|\rightarrow _p0\). Hence \(b_n^{-1}V^Y_{{{\widetilde{N}}}_n}\rightarrow _p0\), completing the proof. \(\quad \square \)

Remark A.3

Suppose that \(b_n\) is regularly varying of index \(1/\alpha \) with \(\alpha >1\). Then the assumptions on \(b_n\) in Theorem A.1 are satisfied, and condition (b) can be restated as \(b_n^{-1}V^Y_n\rightarrow _d {\bar{\tau }}^{1/\alpha }G\).

The Skorohod Topologies on \(D\hbox {[0,\,1]}\)

Let D[0, 1] denote the càdlàg space of right-continuous functions \(g:[0,1]\rightarrow {{\mathbb {R}}}\) with left limits. The uniform topology on D[0, 1] is not suitable for many purposes; on the theoretical side it is not separable, and for applications it is too strong since functions must have jumps in exactly the same place in order to be close to each other.

To circumvent these issues, Skorohod [43] introduced four topologies on D[0, 1] that are separable and sufficiently strong for theoretical purposes, whilst being sufficiently weak to allow the flexibility for functions to be close to each other in reasonable situations. The four topologies are ordered by

$$\begin{aligned} {{\mathcal {J}}}_1> {{\mathcal {J}}}_2> {{\mathcal {M}}}_2 \quad \text {and}\quad {{\mathcal {J}}}_1> {{\mathcal {M}}}_1 > {{\mathcal {M}}}_2 \end{aligned}$$

where > means stronger than. The \({{\mathcal {M}}}_1\) and \({{\mathcal {J}}}_2\) topologies are not comparable. All these topologies are weaker than the uniform topology. The \({{\mathcal {J}}}_2\) topology plays no role in this paper; we define the remaining topologies below. For simplicity, we restrict to the interval [0, 1]. (The differences between D[0, 1] and \(D[0,\infty )\) are of a purely technical nature.) We refer the reader to [43, 47] for more details and proofs.

The Skorohod\({{\mathcal {J}}}_1\)topology The first Skorohod topology, the \({{\mathcal {J}}}_1\) topology, is metrizable and is defined through the metric \(d_{J_1}\) given by

$$\begin{aligned} d_{J_1} (g_1,g_2) =\inf _{\lambda \in \Lambda } \big \{ \Vert g_2\circ \lambda -g_1\Vert \,\vee \, \Vert \lambda -id\Vert \big \} \end{aligned}$$

for \(g_1, g_2\in D[0,1]\), where \(\Lambda \) denotes the space of strictly increasing reparametrizations mapping [0, 1] onto itself and \(\Vert \cdot \Vert \) denotes the uniform norm. This strong topology, which coincides with the uniform topology on the subspace of continuous functions \(C[0,1] \subset D[0,1]\), is suitable to define convergence of discontinuous functions when discontinuities and magnitudes of the jumps are close. For instance, if \(a_n \rightarrow 1\) then the function \(g_n=a_n 1_{[\frac{1}{2}-\frac{1}{n},1]}\) converges to the function \(g=1_{[\frac{1}{2},1]}\) in the \({{\mathcal {J}}}_1\) topology as \(n\rightarrow \infty \). (Note that \(\Vert g_n-g\Vert =|a_n|\) for all n, so there is no convergence in the uniform topology.)

The Skorohod\({{\mathcal {M}}}_1\)topology In many situations, a single jump in the limit function g corresponds to multiple smaller jumps in the functions \(g_n\). In this paper, as in [37], the jumps of \(g_n\) are o(1) and the limit function g has jumps, so a more flexible topology on D[0, 1] is required.

The \({{\mathcal {M}}}_1\) topology on D[0, 1] is again metrizable and is defined in terms of the Hausdorff distance between completed graphs of elements of D[0, 1]. Given \(g\in D[0,1]\), the completed graph of g is the set

$$\begin{aligned} \Gamma (g)=\{(t,s) \in [0,1]\times {{\mathbb {R}}}: s=\alpha g(t^-) +(1-\alpha ) g(t), \; \alpha \in [0,1] \}. \end{aligned}$$

Let \(\Lambda ^*(g)\) denotes the space of parameterizations \(G=(\lambda , \gamma ):[0,1] \rightarrow \Gamma (g)\) such that \(t'<t\) implies either \(\lambda (t')<\lambda (t)\), or \(\lambda (t')=\lambda (t)\) and \(|\gamma (t)-g(\lambda (t))| \le |\gamma (t')-g(\lambda (t'))|\). Then the \({{\mathcal {M}}}_1\)-metric is defined by

$$\begin{aligned} d_{{{\mathcal {M}}}_1} (g_1,g_2) = \inf _{G_i=(\lambda _i, \gamma _i) \in \Lambda ^*(g_i)} \big \{ \Vert \gamma _1 -\gamma _2\Vert \,\vee \, \Vert \lambda _1-\lambda _2\Vert \big \}. \end{aligned}$$

An example in the spirit of Fig. 2a is obtained by defining \(g_n=\frac{3}{4} 1_{[\frac{1}{2}-\frac{1}{n},\frac{1}{2})}+a_n 1_{[\frac{1}{2},1]}\). If \(a_n \rightarrow 1\) then \(g_n\) converges to \(g=1_{[\frac{1}{2},1]}\) in the \({{\mathcal {M}}}_1\) topology as \(n\rightarrow \infty \), but not in the \({{\mathcal {J}}}_1\) topology.

The Skorohod\({{\mathcal {M}}}_2\)topology The \({{\mathcal {M}}}_2\) topology on D[0, 1] is also defined in terms of the Hausdorff distance between completed graphs of elements of D[0, 1], namely \(d_{{{\mathcal {M}}}_2}(g_1,g_2) = \rho (\Gamma (g_1),\Gamma (g_2))\vee \rho (\Gamma (g_2),\Gamma (g_1)) \) where

$$\begin{aligned} \rho (\Gamma (g_1),\Gamma (g_2))&=\sup _{(t_1,s_1) \in \Gamma (g_1)} \inf _{(t_2,s_2) \in \Gamma (g_2)} \Vert (t_1,s_1) - (t_2,s_2) \Vert . \end{aligned}$$

(Here, \(\Vert (t_1,s_1) - (t_2,s_2) \Vert =|t_1-t_2|+|s_1-s_2|\).) An example in the spirit of Fig. 2b is obtained by defining \(g_n=\frac{3}{4} 1_{[\frac{1}{2}-\frac{1}{n},\frac{1}{2})}+\frac{1}{3} 1_{[\frac{1}{2},\frac{1}{2}+\frac{1}{n})} +a_n 1_{[\frac{1}{2}+\frac{1}{n},1]}\). If \(a_n \rightarrow 1\) then \(g_n\) converges to \(g=1_{[\frac{1}{2},1]}\) in the \({{\mathcal {M}}}_2\) topology as \(n\rightarrow \infty \), but not in the \({{\mathcal {M}}}_1\) topology.

An example in the spirit of Fig. 2c is obtained by defining \(g_n=\frac{5}{4} 1_{[\frac{1}{2}-\frac{1}{n},\frac{1}{2})}+a_n 1_{[\frac{1}{2},1]}\), where \(a_n \rightarrow 1\). Then \(g_n\) fails to converge in any of the Skorokhod topologies.

We end this appendix with the following instrumental lemma.

Lemma B.1

Given \(g\in D[a,b]\) take \({\bar{g}}\in D[a,b]\) given by \({\bar{g}}=1_{[a,b)} g(a) + 1_{\{b\}} g(b)\). Then

$$\begin{aligned} d_{{{\mathcal {M}}}_2, [a,b]}(g,{\bar{g}}) \le b-a + A\wedge B, \end{aligned}$$

where

$$\begin{aligned} A&= \sup _{t\in [a,b]} (g(a)-g(t)) + \sup _{t\in [a,b]} (g(t)-g(b)), \\ B&= \sup _{t\in [a,b]} (g(t)-g(a)) + \sup _{t\in [a,b]} (g(b)-g(t)). \end{aligned}$$

Proof

We assume that \(g(b)\ge g(a)\) (the case \(g(b)<g(a)\) is entirely analogous). Then \(\Gamma ({\bar{g}})=\{(t,g(a)):a\le t\le b\}\cup \{(b,s):g(a)\le s\le g(b)\}\). Also \(\Gamma (g)\subset [a,b]\times {{\mathbb {R}}}\) and intersects every horizontal line between \(s=g(a)\) and \(s=g(b)\).

For every \((t,s)\in \Gamma ({\bar{g}})\), there exists \(t'\in [a,b]\) such that \((t',s) \in \Gamma (g)\). Then \(\Vert (t,s)-(t',s)\Vert \le b-a\) and hence \(\rho (\Gamma ({\bar{g}}),\Gamma (g))\le b-a\).

It remains to estimate \(\rho (\Gamma (g),\Gamma ({\bar{g}}))\). Let \((t,s)\in \Gamma (g)\).

  • If \(s\in [g(a),g(b)]\), then \((b,s)\in \Gamma ({\bar{g}})\) and \(\Vert (t,s)-(b,s)\Vert \le b-a\).

  • If \(s<g(a)\), then \((t,g(a))\in \Gamma ({\bar{g}})\) and \(g(t)\le s<g(a)\), so \(\Vert (t,s)-(t,g(a))\Vert = g(a)-s\le g(a)-g(t)=(g(a)-g(t))\wedge (g(b)-g(t)) \le A\wedge B\).

  • If \(s>g(b)\), then \((b,g(b))\in \Gamma ({\bar{g}})\) and there exists \(t'\in [a,b]\) such that \(g(t')\ge s>g(b)\). Hence \(\Vert (t,s)-(b,g(b))\Vert \le b-a+s-g(b)\le b-a+g(t')-g(b)=b-a+(g(t')-g(b))\wedge (g(t')-g(a))\le b-a+A\wedge B\).

In all cases, \(\inf _{({\bar{t}},{\bar{s}})\in \Gamma ({\bar{g}})}\Vert (t,s)-({\bar{t}},{\bar{s}})\Vert \le b-a+A\wedge B\) so \(\rho (\Gamma (g),\Gamma ({\bar{g}}))\le b-a+A\wedge B\) completing the proof. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melbourne, I., Varandas, P. Convergence to a Lévy Process in the Skorohod \({{\mathcal {M}}}_1\) and \({{\mathcal {M}}}_2\) Topologies for Nonuniformly Hyperbolic Systems, Including Billiards with Cusps. Commun. Math. Phys. 375, 653–678 (2020). https://doi.org/10.1007/s00220-019-03501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03501-9

Navigation