Skip to main content
Log in

Total grain size distribution of components of fallout deposits and implications for magma fragmentation mechanisms: examples from Campi Flegrei caldera (Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

In this paper, we present results of the reconstruction of the total grain size distribution (TGSD) of the material erupted during explosive volcanic eruptions at Campi Flegrei (Italy) considering all components (juvenile, lithic and crystal clasts). To date, the few TGSDs made available have been mostly reconstructed by assuming that the tephra deposits consisted of only one component. This simplification can introduce substantial bias in the interpretation of magma fragmentation mechanisms and significantly affect ash dispersion forecasts, since each tephra component has specific aerodynamic characteristics. By means of field investigations and laboratory analyses on samples collected from deposits of the Agnano-Monte Spina and Astroni eruptions, we reconstructed the TGSDs of juvenile, lithic and crystal components via the Voronoi tessellation method. Our results show how the systematic reconstruction of a TGSD, from the component-specific to the bulk TGSD, can provide important information on magma fragmentation mechanisms and wall-rock erosion processes. Results confirm that the bulk TGSD is the combination of the merging of different component subpopulations, according to their own TGSD, density and relative mass proportions. In addition, the integration of component analysis, TGSD and settling velocity data allowed characterization of the aerodynamic behaviour of each component at variable distances from the vent, which can be related to their own parent grain size distribution. The integration of new data from distal tephra deposits for the considered eruptions has thus allowed a reassessment of the erupted volumes of eruptions considered in this research, which are now 3.17 and 0.63 km3, for Agnano-Monte Spina and Astroni, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Biass S, Bonadonna C (2014) TOTGS: Total grainsize distribution of tephra fallout. https://vhub.org/resources/3297

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418

    Google Scholar 

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):742

    Google Scholar 

  • Bonadonna C, Biass S, Costa A (2015) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geotherm Res 296:80–100

    Google Scholar 

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res 111:B08204

    Google Scholar 

  • Campbell ME, Russell J, Porrit LA (2013) Thermomechanical milling of accessory lithics in volcanic conduits. Earth Planet Sci Lett 377-378:276–286

    Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of mount St. Helens volcano J Geophys Res 87(B8):7061–7072

    Google Scholar 

  • Costa A, Dell’Erba F, Di Vito M, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273

    Google Scholar 

  • Costa A, Sparks RSJ, Macedonio G, Melnik O (2009b) Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions. Earth Planet Sci Lett 288:455–462

    Google Scholar 

  • Costa A, Pioli L, Bonadonna C (2016) Assessing tephra total grain-size distribution: insights from field data analysis. Earth Planet Sci Lett 443:90–107

    Google Scholar 

  • de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Southon J (1999) The Agnano-Monte Spina eruption in the densely populated, restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301

    Google Scholar 

  • Di Roberto A, Smedile A, Del Carlo P, De Martini P, Iorio M, Petrelli M, Pantosti D, Pinzi S, Todrani A (2018) Tephra and cryptotephra in a ~60,000-year-old lacustrine sequence from the Fucino Basin: new insights into the major explosive events in Italy. Bull Volcanol 80:20

    Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J Volcanol Geotherm Res 91:221–246

    Google Scholar 

  • Dell’Erba F (2004) Definizione di parametric fisici di alcune eruzioni esplosive della caldera dei Campi Flegrei negli ultimi 15 ka: implicazioni per la valutazione della pericolosità vulcanica. Ph.D. thesis, Bari, University of Bari, 147 pp.

  • Dellino P, Isaia R, La Volpe L, Orsi G (2001) Statistical analysis of textural data from complex pyroclastic sequences: implication for fragmentation processes of the Agnano-Monte Spina tephra (4.1 ka), Phlegraean fields southern Italy. Bull Volcanol 63:443–461

    Google Scholar 

  • Dellino P, Mele D, Bonasia R, Braia G, La Volpe L, Sulpizio R (2005) The analysis of the influence of pumice shape on its terminal velocity. Geophys Res Lett 32:L21306

    Google Scholar 

  • Dellino P, Gudmundsson MT, Larsen G, Mele D, Stevenson JA, Thordarson T, Zimanowski B (2012) Ash from the Eyjafjallajökull eruption (Iceland): fragmentation processes and aerodynamic behavior. J Geophys Res 117:B00C04. https://doi.org/10.1029/2011JB008726

    Article  Google Scholar 

  • Dioguardi F, Dellino P (2014) PYFLOW: a computer code for the calculation of the impact parameters of dilute pyroclastic density current (DPDC) based on field data. Comput Geosci 66:200–210

    Google Scholar 

  • Dioguardi F, Mele D, Dellino P, Dürig T (2017) The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography. J Volcanol Geotherm Res 329:41–53

    Google Scholar 

  • Dellino P, Dioguardi F, Doronzo DM, Mele D (2019) A discriminatory diagram of massive vs stratified deposits based on the sedimentation and bedload transportation rates. Experimental investigation and application to pyroclastic density currents Sedimentology https://doi.org/10.1111/sed.12693

  • Dioguardi F, Mele D, Dellino P (2018) A new one-equation model of fluid drag for irregularly shaped particles valid over a wide range of Reynold number. J Geophys Res 123:144–156

    Google Scholar 

  • Eychenne J, Le Pennec J (2012) Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74:2234–2249

    Google Scholar 

  • Engwell SL, Aspinall WP, Sparks RSJ (2015) An objective method for the production of isopach maps and impications for the estimation of tephra deposit. Bull Volcanol 77:61

    Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of tephra fallout volumes. Bull Volcanol 54:156–167

    Google Scholar 

  • Folch A, Sulpizio R (2010) Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over the Central Mediterranean area. Bull Volcanol 72:1039–1059

    Google Scholar 

  • Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236(1):96–115

    Google Scholar 

  • Heap MJ, Xu T, Chen C (2014) The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull Volcanol 76:856

    Google Scholar 

  • Hensch M, Dahm T, Ritter J, Heimann S, Schmidt B, Stange S, Lehmann (2019) Deep low-frequancy earthquakes reveal ongoing magmatic recharge beneath Laacher See volcano (Eifel, Germany). Geophys J Int 216 (3):2025–2036

  • Houghton BF, Wilson CJN (1998) Fire and water: the physical roles of water in caldera eruptions at Taupo and Okataina volcanic centres. Water–Rock Interaction, Taupo, pp 25–30

    Google Scholar 

  • Hu L, Ge K, Zhang Y, Zhang D, Su GH, Tian W, Qiu S (2020) Experimental research on fragmentation characteristics of molten stainless steel discharged into sodium pool comparison with molten copper. Prog Nucl Energy 118:103069

    Google Scholar 

  • Inman DL (1952) Measures of describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of close eruptionswithin the same vent area in the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133:171–192

    Google Scholar 

  • Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36:L21303. https://doi.org/10.1029/2009GL040513

    Article  Google Scholar 

  • Jones TJ, Russell JK (2017) Ash production by attrition in volcanic conduits and plumes. Sci Report 7:5538. https://doi.org/10.1038/s41598-017-05450-6

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the frag-mentation sequence in explosive volcanic eruptions. J Geophys Res 103:29759–29779

    Google Scholar 

  • Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 years as recorded in deep-sea sediments. Geol Soc Am Bull 89:591–604

    Google Scholar 

  • Liu EJ, Cashman KV, Rust AC, Gislason SR (2015) The role of bubbles in generating fine ash during hydromagmatic eruptions. Geology 43(3):239–242

    Google Scholar 

  • Liu EJ, Cashman KV, Rust AC, Höskuldsson A (2017) Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption Iceland. Bull Volcanol 79:68

    Google Scholar 

  • Lowe JJ, Blockley S, Trincardi F, Asioli A, Cattaneo A, Matthews IP, Pollard M, Wulf S (2007) Age modelling of late Quaternary marine sequences in the Adriatic: towards improved precision and accuracy using volcanic event stratigraphy. Cont Shelf Res 27:560–582

    Google Scholar 

  • Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of the Plinian fall phase of 79 A.D. eruption of Vesuvius. J Geophys Res 93:14817–14827

    Google Scholar 

  • Macedonio G, Dobran F, Neri A (1994) Erosion processes in volcanic conduits and an application to the AD 79 eruption of Vesuvius. Earth Planet Sci Lett 121:137–152

    Google Scholar 

  • Massaro S, Costa A, Sulpizio R (2018) Evolution of the magma feeding system during a Plinian eruption: the case of Pomici di Avellino eruption of Somma-Vesuvius, Italy. Earth Planet Sci Lett 482:545–555

    Google Scholar 

  • Mele D, Dioguardi F, Dellino P, Isaia R, Sulpizio R, Braia G (2015) Hazard of pyroclastic density currents at the Campi Flegrei caldera (southern Italy) as deduced from the combined use of face architecture, physical modeling and statistics of the impact parameters. J Volcanol Geotherm Res 299:35–53

    Google Scholar 

  • Mele D, Dioguardi F (2018) The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits. J Volcanol Geotherm Res 353(15):18–24

    Google Scholar 

  • Moiseenko KB, Malik NA (2019) Linear inverse problem for inferring eruption source parameters from sparse ash deposit data as viewed from an atmospheric dispersion modeling perspective. Bull Volcanol 81:19

    Google Scholar 

  • Murrow PJ, Rose WI, Self S (1980) Determination of the total grain size distribution in a Vulcanian eruption column, and its implications to stratospheric aerosol perturbation. Geophys Res Lett 7:893–896

    Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecasting of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 287:265–276

    Google Scholar 

  • Palladino DM, Simei S (2002) Three types of pyroclastic currents and their deposits: examples from the Vulsini volcanoes, Italy. J Volcanol Geotherm Res 116:97–118

    Google Scholar 

  • Parfitt E (1998) A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. J Volcanol Geotherm Res 84:197–208

    Google Scholar 

  • Paterne M, Guichard F, Labeyrie J (1988) Explosive activity of the south Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. J Volcanol Geotherm Res 34:153–172

    Google Scholar 

  • Pfeiffer T, Costa A (2004a) A numerical reconstruction of fall deposits from Agnano-Monte Spina (4100 BP) Plinian eruption in the Campi Flegrei area, Italy, Osservatorio Vesuviano-INGV, Naples, Italy. Report (1), Prot. N. 4440 (10.9.2004). http://www.earth-prints.org/handle/2122/2068

  • Pfeiffer T, Costa A (2004b) Reconstruction and analysis of a sub-Plinian fall deposits from the Astroni volcano (ca. 4100–3800 BP) in the Campi Flegrei area, Italy, Osservatorio Vesuviano-INGV, Naples, Italy. Report (2), Prot. N. 4440 (10.9.2004). http://www.earth-prints.org/handle/2122/2069

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294

    Google Scholar 

  • Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15

    Google Scholar 

  • Remy E, Thiel E (2002) Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D. Pattern Recogn. Lett. 23(6):649–661

    Google Scholar 

  • Rose WI (1993) Comment on “another look at the calculation of tephra fallout volumes” by Judy Fierstein and Manuel Nathenson. Bull Volcanol 55:372–374

    Google Scholar 

  • Rose W, Durant A (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:32–39

    Google Scholar 

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res 116(B11)

  • Sandri L, Costa A, Selva J, Tonini R, Macedonio G, Folch A, Sulpizio R (2016) Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes. Sci Rep 6:24271

    Google Scholar 

  • Scollo S, Folch A, Costa A (2008) A parametric and comparative study of different tephra fallout models. J Volcanol Geotherm Res 176:199–211

    Google Scholar 

  • Scollo S, Prestifilippo M, Pecora E, Corradini S, Merucci L, Spata G, Coltelli M (2014) Eruption column height estimation of the 2011-2013 Etna lava fountains. Ann Geophys 57

  • Selva J, Costa A, De Natale G, Di Vito MA, Isaia R, Macedonio G (2018) Sensivity test and esemble hazard assessment for tephra fallout at Campi Flegrey, Italy. J Volcanol Geotherm Res 351:1–28

    Google Scholar 

  • Siani G, Sulpizio R, Paterne M, Sbrana A (2004) Tephrostratigraphy study for the last 18,000 14C years in a deep-sea sediment sequence for the south Adriatic. Quat Sci Rev 23:2485–2500

    Google Scholar 

  • Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660

    Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond A 229:241–273

    Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. 2: controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54:685–695

    Google Scholar 

  • Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145:315–336

    Google Scholar 

  • Sulpizio R, Van Wleden A, Caron B, Zanchetta G (2010) The Holocene tephrostratigraphic records of Lake Shkodra (Albania and Montenegro). J Quat Sci 25(5):633–650

    Google Scholar 

  • Sulpizio R, Zanchetta G, Caron B, Dellino P, Mele D, Giaccio B, Insinga D, Paterne M, Siani G, Costa A, Macedonio G, Santacroce R (2014) Volcanic ash hazard in the Central Mediterranean assessed from geological data. Bull Volcanol 76:866

    Google Scholar 

  • Tsunematsu K, Bonadonna C (2015) Grain-size features of two large erup-tions from Cotopaxi volcano (Ecuador) and implications for the calculation of the total grain-size distribution. Bull Volcanol 77(7):64

    Google Scholar 

  • Walker GPL (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240

    Google Scholar 

  • White JT, Connor CB, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. J Geophys Res Solid Earth 122:281–294

    Google Scholar 

  • Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122:7–30

    Google Scholar 

  • Wulf S, Kraml M, Keller J (2008) Toward a detailed distal tephrostratigraphy in the Central Mediterranean: the last 20,000 yrs record of Lago Grande di Monticchio. J Volcanol Geotherm Res 177:118–132

    Google Scholar 

  • Yang T, Zhu H, Zhang Z, Gao X, Zhang C, Wu Q (2018) Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes. Cem Concr Res 109:198–207

    Google Scholar 

  • Zanchetta G, Sulpizio R, Roberts N, Cioni R, Eastwood WJ, Siani G, Caron B, Paterne M, Santacroce R (2011) Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: an overview. The Holocene 21:33–52

    Google Scholar 

  • Zimanowski B, Wohletz K, Dellino P, Büttner R (2003) The volcanic ash problem. J Volcanol Geotherm Res 122:1–5

    Google Scholar 

Download references

Acknowledgments

This work has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri-Dipartimento della Protezione Civile (DPC), agreement INGV-DPC 2015-2016. A.C., G.M., and R.I. acknowledge the European project EUROVOLC (grant agreement number 731070) and the MIUR project Premiale Ash-RESILIENCE. This work is published with permission of the Executive Director of British Geological Survey (UKRI). The editor, Andrew Harris, the associate editor, Richard J. Brown, Sebastian Watt and an anonymous reviewer greatly helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mele.

Ethics declarations

Disclaimer

This paper does not necessarily represent the DPC official opinion and policies.

Additional information

Editorial responsibility: R.J. Brown

Electronic supplementary material

ESM 1

(XLSX 55 kb)

ESM 2

(DOCX 919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mele, D., Costa, A., Dellino, P. et al. Total grain size distribution of components of fallout deposits and implications for magma fragmentation mechanisms: examples from Campi Flegrei caldera (Italy). Bull Volcanol 82, 31 (2020). https://doi.org/10.1007/s00445-020-1368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-1368-8

Keywords

Navigation