Skip to main content

Advertisement

Log in

Diel cycles of δ13CDIC and ecosystem metabolism in ephemeral dryland streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Streams in hot, arid environments often exist as a series of isolated pools along main channels. During these periods, shallow alluvial through flow may strongly influence key ecological processes within pools. We measured diel changes in δ13C values of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) in two pools of ephemeral, dryland streams. We quantified alluvial water connectivity through stable isotope analysis (δ18O and δ2H) of pool and alluvial water. We also estimated gross primary productivity (GPP) and ecosystem respiration (ER) rates across a wider set of pools in both streams. δ13CDIC values displayed regular diel cycles, where both pools displayed small but similar daily amplitude (0.7–0.9‰) despite contrasting amplitudes of change in DO (0.8 mg L−1 vs. 2.8 mg L−1) and contrasting alluvial water connectivity (connected vs. disconnected). Water temperature was the strongest predictor of both δ13CDIC values and rates of change in δ13CDIC across both pools. Across both streams, all pools were net heterotrophic. GPP (0.35–1.73 g O2 m−2 d−1) and ER (0.49–2.64 g O2 m−2 d−1) rates were linked to aquatic vegetation cover. The disconnect between diurnal amplitudes of δ13C values and DO concentrations thus suggests that ecological drivers of gas exchange became increasingly localised as pools contracted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña V, Giorgi A, Muñoz I, Uehlinger U, S. Sabater S. (2004) Flow extremes and benthic organic matter shape the metabolism of a headwater mediterranean stream. Freshw Biol 49:960–971

    Google Scholar 

  • Andersen MR, Kragh T, Martinsen KT, Kristensen E, Sand-Jensen K (2019) The carbon pump supports high primary production in a shallow lake. Aquat Sci 81:24

    Google Scholar 

  • Appling AP, Hall RO Jr, Yackulic CB, Arroita M (2018) Overcoming equifinality: leveraging long time series for stream metabolism estimation. J Geophys Res-Biogeo 123:624–645

    CAS  Google Scholar 

  • Attermeyer K, Flury S, Jayakumar R, Fiener P, Steger K, Arya V, Premke K (2016) Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake. Sci Rep 6:20424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnol Oceanogr 49:1160–1172

    CAS  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res-Biogeo 113:G02024

    Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95

    CAS  Google Scholar 

  • Bott TL (2006) Primary productivity and community respiration. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, 2nd edn. Academic Press, San Diego, pp 533–556

  • Bunn SE, Davies PM, Mosisch TD (1999) Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw Biol 41:333–345

    Google Scholar 

  • Bunn SE, Davies PM, Winning M (2003) Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshw Biol 48:619–635

    Google Scholar 

  • Bunn SE, Balcombe SR, Davies PM, Fellows CS, Mckenzie-Smith FJ (2006a) Aquatic productivity and food webs of desert river ecosystems. In: Kingsford RT (ed) Ecology of desert rivers. Cambridge University Press, pp 76–99

  • Bunn SE, Thoms MC, Hamilton SK, Capon SJ (2006) Flow variability in dryland rivers: boom, bust and the bits in between. River Res Appl 22:179–186

    Google Scholar 

  • Campeau A, Wallin MB, Giesler R, Löfgren S, Mörth CM, Schiff S, Bishop K (2017) Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci Rep 7:9158

    PubMed  PubMed Central  Google Scholar 

  • Campeau A, Bishop K, Nilsson MB, Klemedtsson L, Laudon H, Leith FI, Wallin MB (2018) Stable carbon isotopes reveal soil-stream DIC linkages in contrasting headwater catchments. J Geophys Res Biogeo 123:149–167

    CAS  Google Scholar 

  • Capone TA, Kushlan JA (1991) Fish community structure in dry-season stream pools. Ecology 72:983–992

    Google Scholar 

  • Casas-Ruiz JP, Tittel J, von Schiller D, Catalán N, Obrador B, Gómez-Gener L, Zwirnmann E, Sabater S, Marcé R (2016) Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river. Biogeochemistry 121:125–139

    Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Google Scholar 

  • Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl Chem 66:273–276

    CAS  Google Scholar 

  • Coplen TB (1995) Discontinuance of SMOW and PDB. Nature 375:285–285

    CAS  Google Scholar 

  • Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ13C measurements. Anal Chem 78:2439–2441

    CAS  PubMed  Google Scholar 

  • Dahm CN, Baker MA, Moore DI, Thibault JR (2003) Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshw Biol 48:1219–1231

    CAS  Google Scholar 

  • Demars BOL, Thompson J, Manson JR (2015) Stream metabolism and the open diel oxygen method: principles, practice, and perspectives. Limnol Oceanogr Methods 13:356–374

    CAS  Google Scholar 

  • Dienes Z (2014) Using Bayes to get the most out of non-significant results. Front Psychol 5:781

    PubMed  PubMed Central  Google Scholar 

  • Doctor DH, Kendall C, Sebestyen SD, Shanley JB, Ohte N, Boyer EW (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Process 22:2410–2423

    CAS  Google Scholar 

  • Dodds WK, Tromboni F, Aparecido Saltarelli W, Fernandes Cunha DG (2017) The root of the problem: direct influence of riparian vegetation on estimation of stream ecosystem metabolic rates. Limnol Oceanogr 2:9–17

    Google Scholar 

  • Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J Hydrol 475:281–293

    CAS  Google Scholar 

  • Dogramaci S, Firmani G, Hedley P, Skrzypek G, Grierson PF (2015) Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance. J Hydrol 521:520–532

    CAS  Google Scholar 

  • Drysdale R, Lucas S, Carthew K (2003) The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream. Hydrol Process 17:3421–3441

    Google Scholar 

  • Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870

    CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40:503–537

    CAS  Google Scholar 

  • Fellman JB, Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2011) Hydrologic control of dissolved organic matter biogeochemistry in pools of a subtropical dryland river. Water Resour Res 47:W06501. https://doi.org/10.1029/2010WR010275

    Article  Google Scholar 

  • Fellman JB, Spencer RGM, Raymond PA, Pettit NE, Skrzypek G, Hernes PJ, Grierson PF (2014) Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95:2622–2632

    Google Scholar 

  • Fellows CS, Wos ML, Pollard PC, Bunn SE (2007) Ecosystem metabolism in a dryland river waterhole. Mar Freshw Res 58:250–262

    CAS  Google Scholar 

  • Fellows CS, Bunn SE, Sheldon F, Beard NJ (2009) Benthic metabolism in two turbid dryland rivers. Freshw Biol 54:236–253

    Google Scholar 

  • Finlay J (2003) Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 62:231–252

    CAS  Google Scholar 

  • Fisher SG, Grimm NB, Martí E, Gómez R (1998a) Hierarchy, spatial configuration, and nutrient cycling in a desert stream. Aust J Ecol 23:41–52

    Google Scholar 

  • Fisher SG, Grimm NB, Martí E, Holmes RM, Jones JJB (1998b) Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems 1:19–34

    CAS  Google Scholar 

  • Francis C, Sheldon F (2002) River Red Gum (Eucalyptus camaldulensis Dehnh.) organic matter as a carbon source in the lower Darling River, Australia. Hydrobiologia 481:113–124

    CAS  Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262

    CAS  Google Scholar 

  • Gómez-Gener L, Obrador B, von Schiller D, Marcé R, Casas-Ruiz JP, Proia L, Koschorreck M (2015) Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry 125:409–426

    Google Scholar 

  • Gómez-Gener L, Obrador B, Marcé R, Acuña V, Catalán N, Casas-Ruiz JP, Sabater S, Muñoz I, von Schiller D (2016) When water vanishes: magnitude and regulation of carbon dioxide emissions from dry temporary streams. Ecosystems 19:710–723

    Google Scholar 

  • Grace M, Imberger S (2006) Stream metabolism: performing and interpreting measurements. Water Studies Centre Monash University, Murray Darling Basin Commission and New South Wales Department of Environmental and Climate Change. p 204

  • Grace MR, Giling DP, Hladyz S, Caron V, Thompson RM, Mac Nally R (2015) Fast processing of diel oxygen curves: estimating stream metabolism with BASE (BAyesian Single-station Estimation). Limnol Oceanogr Method 13:103–114

    CAS  Google Scholar 

  • Green SA, Blough NB (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916

    CAS  Google Scholar 

  • Grimm NB, Fisher SG (1986) Nitrogen limitation in a Sonoran Desert stream. J N Am Benthol Soc 5:2–15

    Google Scholar 

  • Grimm NB, Fisher SG (1989) Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J N Am Benthol Soc 8:293–307

    Google Scholar 

  • Hornberger GM, Kelly MG (1975) Atmospheric reaeration in a river using productivity analysis. J Environ Eng Div 101:729–739

    Google Scholar 

  • Holgerson MA (2015) Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry 124:305–318

    CAS  Google Scholar 

  • Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222

    CAS  Google Scholar 

  • Hotchkiss ER, Hall RO Jr, Sponseller RA, Butman D, Klaminder J, Laudon H, Karlsson J (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696

    CAS  Google Scholar 

  • Humphries P, Keckeis H, Finlayson B (2014) The river wave concept: integrating river ecosystem models. BioScience 64:870–882

    Google Scholar 

  • Iles J (2019) Nutrient limitation and interactions with organic matter and sediments within dryland streams of the Pilbara region of northwest Australia. Dissertation, The University of Western Australia.

  • Jähne B, Münnich O, Bösinger R, Dutzi A, Huber W, Libner P (1987) On the parameters influencing air-water gas exchange. J Geophys Res 92:1937–1949

    Google Scholar 

  • Jones JB Jr, Fisher SG, Grimm NB (1995) Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76:942–952

    Google Scholar 

  • Jones JB (2002) Groundwater controls on nutrient cycling in a Mojave Desert stream. Freshw Biol 47:971–983

    CAS  Google Scholar 

  • Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509

    CAS  PubMed  Google Scholar 

  • Keeling RF, Piper SC, Bollenbacher AF, Walker SJ (2010) Monthly atmospheric 13C/12C isotopic ratios for 11 SIO stations. In: Trends: a compendium of data on global change. US Department of Energy

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes—a review. Aquat Bot 72:249–260

    Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738

    Google Scholar 

  • Marlier JF, O'Leary MH (1984) Carbon kinetic isotope effects on the hydration of carbon dioxide and the dehydration of bicarbonate ion. J Am Chem Soc 106:5054–5057

    CAS  Google Scholar 

  • McConnaughey T (1998) Acid secretion, calcification, and photosynthetic carbon concentrating mechanisms. Can J Bot 76:1119–1126

    CAS  Google Scholar 

  • McCutchan JH, Lewis WM, Saunders JF (1998) Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J N Am Benthol Soc 17:155–164

    Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    CAS  Google Scholar 

  • Mulholland PJ, Steinman AD, Palumbo AV, Elwood JW, Kirschtel DB (1991) Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology 72:966–982

    CAS  Google Scholar 

  • Mulholland PJ, Marzolf ER, Hendricks SP, Wilkerson RV, Baybayan AK (1995) Longitudinal patterns of nutrient cycling and periphyton characteristics in streams: a test of upstream-downstream linkage. J N Am Benthol Soc 14:357–370

    Google Scholar 

  • Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Martí E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH (2001) Inter-biome comparison of factors controlling stream metabolism. Freshwater Biol 46:1503–1517

    CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Nimick DA, Gammons CH, Parker SR (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chem Geol 283:3–17

    CAS  Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Google Scholar 

  • Oliver RL, Merrick CJ (2006) Partitioning of river metabolism identifies phytoplankton as a major contributor in the regulated Murray River (Australia). Freshw Biol 51:1131–1148

    CAS  Google Scholar 

  • Parker SR, Poulson SR, Gammons CH, Degrandpre MD (2005) Biogeochemical controls on diel cycling of stable isotopes of dissolved O2 and dissolved inorganic carbon in the Big Hole River, Montana. Environ Sci Technol 39:7134–7140

    CAS  PubMed  Google Scholar 

  • Parker SR, Gammons CH, Poulson SR, Degrandpre MD, Weyer CL, Smith MG, Babcock JN, Oba Y (2010) Diel behavior of stable isotopes of dissolved oxygen and dissolved inorganic carbon in rivers over a range of trophic conditions, and in a mesocosm experiment. Chem Geol 269:22–32

    CAS  Google Scholar 

  • Pinardi M, Bartoli M, Longhi D, Viaroli P (2011) Net autotrophy in a fluvial lake: the relative role of phytoplankton and floating-leaved macrophytes. Aquat Sci 73:389–403

    CAS  Google Scholar 

  • Pronin E, Pełechaty M, Apolinarska K, Pukacz A, Frankowski M (2016) Sharp differences in the δ13C values of organic matter and carbonate encrustations but not in ambient water DIC between two morphologically distinct charophytes. Hydrobiologia 773:177–191

    CAS  Google Scholar 

  • R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rasmussen JJ, Baattrup-Pedersen A, Riis T, Friberg N (2011) Stream ecosystem properties and processes along a temperature gradient. Aquat Ecol 45:231–242

    Google Scholar 

  • Rouder JN, Morey RD (2013) Default Bayes factors for model selection in regression. Multivar Behav Res 47:877–903

    Google Scholar 

  • Rouillard A, Skrzypek G, Dogramaci S, Turney C, Grierson PF (2015) Impacts of high inter-annual variability of rainfall on a century of extreme hydrological regime of northwest Australia. Hydrol Earth Syst Sci 19:2057–2078

    Google Scholar 

  • Scott JT, Back JA, Taylor JM, King RS (2008) Does nutrient enrichment decouple algal–bacterial production in periphyton? J N Am Benthol Soc 27:332–344

    Google Scholar 

  • Siebers AR, Pettit NE, Skrzypek G, Fellman JB, Dogramaci S, Grierson PF (2016) Alluvial ground water influences dissolved organic matter biogeochemistry of pools within intermittent dryland streams. Freshw Biol 61:1228–1241

    CAS  Google Scholar 

  • Skrzypek G (2013) Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal Bioanal Chem 405:2815–2823

    CAS  PubMed  Google Scholar 

  • Skrzypek G, Dogramaci S, Grierson PF (2013) Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chem Geo 357:164–177

    CAS  Google Scholar 

  • Smith SV (1985) Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface. Plant Cell Environ 8:387–398

    CAS  Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ (2005) Temperature independence of carbon dioxide supersaturation in global lakes. Glob Biogeochem Cycles 19:3GB2003. https://doi.org/10.1029/2004GB002264

    Article  CAS  Google Scholar 

  • Staehr PA, Bade D, Van de Bogert MC, Koch GR, Williamson C, Hanson P, Cole JJ, Kratz T (2010) Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr Methods 8:628–644

    CAS  Google Scholar 

  • Stanley EH, Fisher SG, Grimm NB (1997) Ecosystem expansion and contraction in streams. BioScience 47:427–435

    Google Scholar 

  • Tank JL, Martí E, Riis T, von Schiller D, Reisinger AJ, Dodds WK, Whiles MR, Ashkenas LR et al (2017) Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. Ecol Monogr. https://doi.org/10.1002/ecm.1280

    Article  Google Scholar 

  • Tobias CR, Böhlke JK, Judson WH (2007) The oxygen-18 isotope approach for measuring aquatic metabolism in high-productivity waters. Limnol Oceanogr 52:1439–1453

    CAS  Google Scholar 

  • Tobias C, Böhlke JK (2011) Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: implications for reach scales and beyond. Chem Geol 283:18–30

    CAS  Google Scholar 

  • Townsend SA, Webster IT, Schult JH (2011) Metabolism in a groundwater-fed river system in the Australian wet/dry tropics: tight coupling of photosynthesis and respiration. J N Am Benthol Soc 30:603–620

    Google Scholar 

  • Valett HM, Fisher SG, Grimm NB, Camill P (1994) Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology 75:548–560

    Google Scholar 

  • Valett HM, Morrice JA, Dahm CN, Campana ME (1996) Parent lithology, surface–groundwater exchange, and nitrate retention in headwater streams. Limnol Oceanogr 41:333–345

    CAS  Google Scholar 

  • Vazquez E, Amalfitano S, Fazi S, Butturini A (2011) Dissolved organic matter composition in a fragmented mediterranean fluvial system under severe drought conditions. Biogeochemistry 102:59–72

    Google Scholar 

  • von Schiller D, Bernal S, Dahm CN, Martí E (2017) Nutrient and organic matter dynamics in intermittent rivers and ephemeral streams. In: Datry T, Bonada N, Boulton AJ (eds) Intermittent rivers and ephemeral streams. Academic Press, pp 135–160.

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Google Scholar 

  • Water Environmental Federation (WEF) & American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington

    Google Scholar 

  • Webster IT, Rea N, Padovan AV, Dostine P, Townsend SA, Cook S (2005) An analysis of primary production in the Daly River, a relatively unimpacted tropical river in northern Australia. Mar Freshw Res 56:303–316

    CAS  Google Scholar 

  • Wiegner TN, Kaplan LA, Newbold JD, Ostrom PH (2005) Contribution of dissolved organic C to stream metabolism: a mesocosm study using 13C-enriched tree-tissue leachate. J N Am Benthol Soc 24:48–67

    Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by an Australian Research Council linkage grant to The University of Western Australia and Rio Tinto Iron Ore (LP0776626) and an Australian Research Council Future Fellowship awarded to Grzegorz Skrzypek (FT110100352). We thank Jordan Iles and Jennifer Kelley for access to unpublished data from subsequent samples from Coondiner Creek. The authors also wish to thank Kate Bowler and Doug Ford for laboratory assistance, and Grace Campbell, Romony Coyle, and Jennifer Kelley for assistance in the field. Our thanks to Chris Robinson and several anonymous reviewers who provided suggestions that greatly improved the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre R. Siebers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siebers, A.R., Pettit, N.E., Skrzypek, G. et al. Diel cycles of δ13CDIC and ecosystem metabolism in ephemeral dryland streams. Aquat Sci 82, 32 (2020). https://doi.org/10.1007/s00027-020-0708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-020-0708-2

Keywords

Navigation