Skip to main content
Log in

A robust spatial autoregressive scalar-on-function regression with t-distribution

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Modelling functional data in the presence of spatial dependence is of great practical importance as exemplified by applications in the fields of demography, economy and geography, and has received much attention recently. However, for the classical scalar-on-function regression (SoFR) with functional covariates and scalar responses, only a relatively few literature is dedicated to this relevant area, which merits further research. We propose a robust spatial autoregressive scalar-on-function regression by incorporating a spatial autoregressive parameter and a spatial weight matrix into the SoFR to accommodate spatial dependencies among individuals. The t-distribution assumption for the error terms makes our model more robust than the classical spatial autoregressive models under normal distributions. We estimate the model by firstly projecting the functional predictor onto a functional space spanned by an orthonormal functional basis and then presenting an expectation–maximization algorithm. Simulation studies show that our estimators are efficient, and are superior in the scenario with spatial correlation and heavy tailed error terms. A real weather dataset demonstrates the superiority of our model to the SoFR in the case of spatial dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera AM, Escabias M, Preda C, Saporta G (2010) Using basis expansions for estimating functional PLS regression: applications with chemometric data. Chemometr Intell Lab Syst 104(2):289–305

    Google Scholar 

  • Aguilera-Morillo MC, Durbán M, Aguilera AM (2017) Prediction of functional data with spatial dependence: a penalized approach. Stoch Environ Res Risk Assess 31(1):7–22

    MATH  Google Scholar 

  • Ait-Saïdi A, Ferraty F, Kassa R, Vieu P (2008) Cross-validated estimations in the single-functional index model. Statistics 42(6):475–494

    MathSciNet  MATH  Google Scholar 

  • Anselin L (1998) Spatial econometrics: methods and models. Springer, Berlin

    Google Scholar 

  • Anselin L (2002) Under the hood issues in the specification and interpretation of spatial regression models. Agric Econ 27(3):247–267

    Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13(3):571–591

    MathSciNet  MATH  Google Scholar 

  • Case AC (1991) Spatial patterns in household demand. Econometrica 59(4):953–965

    Google Scholar 

  • Case AC, Rosen HS, Hines JR (1993) Budget spillovers and fiscal policy interdependence: evidence from the states. J Public Econ 52(3):285–307

    Google Scholar 

  • Cliff A, Ord K (1972) Testing for spatial autocorrelation among regression residuals. Geogr Anal 4(3):267–284

    Google Scholar 

  • Crainiceanu CM, Staicu A-M, Di C-Z (2009) Generalized multilevel functional regression. J Am Stat Assoc 104(488):1550–1561

    MathSciNet  MATH  Google Scholar 

  • Crambes C, Kneip A, Sarda P (2009) Smoothing splines estimators for functional linear regression. Ann Stat 37(1):35–72

    MathSciNet  MATH  Google Scholar 

  • Cressie N, Wikle CK (2015) Statistics for spatio-temporal data. Wiley, Hoboken

    MATH  Google Scholar 

  • Dacey M (1968) A review of measure of continuity for two and k-color maps. In: Berry B, Marble D (eds) Spatial analysis: a reader in statistical geography. Prentice-Hall, Englewood Cliffs, NJ, pp 479–495

    Google Scholar 

  • Dauxois J, Pousse A, Romain Y (1982) Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J Multivar Anal 12(1):136–154

    MathSciNet  MATH  Google Scholar 

  • De Jong S (1993) PLS fits closer than PCR. J Chemom 7(6):551–557

    Google Scholar 

  • Delaigle A, Hall P (2012) Methodology and theory for partial least squares applied to functional data. Ann Stat 40(1):322–352

    MathSciNet  MATH  Google Scholar 

  • Fang Y, Yuejiao F, Lee TCM (2011) Functional mixture regression. Biostatistics 12(2):341–353

    MATH  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, Berlin

    MATH  Google Scholar 

  • Garca-Portugus E, Gonzlez-Manteiga W, Febrero-Bande M (2014) A goodness-of-fit test for the functional linear model with scalar response. J Comput Graph Stat 23(3):761–778

    MathSciNet  Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2017) Spatial prediction of a scalar variable based on data of a functional random field. Comunicaciones en Estadística 10(2):315–344

    Google Scholar 

  • Goldsmith J, Crainiceanu CM, Caffo B, Reich D (2012) Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. J R Stat Soc 61(3):453–469

    MathSciNet  Google Scholar 

  • Goulard M, Laurent T, Thomas-Agnan C (2017) About predictions in spatial autoregressive models: optimal and almost optimal strategies. Spat Econ Anal 12(2–3):304–325

    Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35(1):70–91

    MathSciNet  MATH  Google Scholar 

  • Hastie T, Mallows C (1993) a statistical view of some chemometrics regression tools: discussion. Technometrics 35(2):140–143

    Google Scholar 

  • Isard W et al (1970) General theory: social, political, economic and regional. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • James GM (2002) Generalized linear models with functional predictors. J R Stat Soc Ser B (Stat Methodol) 64(3):411–432

    MathSciNet  MATH  Google Scholar 

  • James GM, Silverman BW (2005) Functional adaptive model estimation. J Am Stat Assoc 100(470):565–576

    MathSciNet  MATH  Google Scholar 

  • James G, Hastie T, Sugar C (2000) Principal component models for sparse functional data. Biometrika 87(3):587–602

    MathSciNet  MATH  Google Scholar 

  • Jamshidian M, Jennrich RI (2000) Standard errors for em estimation. J R Stat Soc Ser B (Stat Methodol) 62(2):257–270

    MathSciNet  Google Scholar 

  • Kelejian HH, Prucha IR (2001) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2):509–533

    MathSciNet  Google Scholar 

  • Lee L-F (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6):1899–1925

    MathSciNet  MATH  Google Scholar 

  • Lee L-F (2007) GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. J Econ 137(2):489–514

    MathSciNet  MATH  Google Scholar 

  • Lesage J, Pace RK (2009) Introduction to spatial econometrics. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Li Y, Hsing T (2010) Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann Stat 38(6):3321–3351

    MathSciNet  MATH  Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the em algorithm. J R Stat Soc Ser B (Methodol) 44(2):226–233

    MathSciNet  MATH  Google Scholar 

  • Marx BD, Eilers PHC (1999) Generalized linear regression on sampled signals and curves: a P-spline approach. Technometrics 41(1):1–13

    Google Scholar 

  • Menafoglio A, Secchi P (2017) Statistical analysis of complex and spatially dependent data: a review of object oriented spatial statistics. Eur J Oper Res 258(2):401–410

    MathSciNet  MATH  Google Scholar 

  • Morris JS (2015) Functional regression. Ann Rev Stat Appl 2(1):321–359

    Google Scholar 

  • Müller H-G, Wu Y, Yao F (2013) Continuously additive models for nonlinear functional regression. Biometrika 100(3):607–622

    MathSciNet  MATH  Google Scholar 

  • Nerini D, Monestiez P, Manté C (2010) Cokriging for spatial functional data. J Multivar Anal 101(2):409–418

    MathSciNet  MATH  Google Scholar 

  • Olubusoye OE, Korter GO, Salisu AA (2016) Modelling road traffic crashes using spatial autoregressive model with additional endogenous variable. Stat Transit New Ser 17(4):659–670

    Google Scholar 

  • Ord K (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 70(349):120–126

    MathSciNet  MATH  Google Scholar 

  • Peel D, McLachlan G (2000) Robust mixture modelling using the t distribution. Stat Comput 10:339–348

    Google Scholar 

  • Pineda-Ríos W, Giraldo R, Porcu E (2019) Functional SAR models: with application to spatial econometrics. Spat Stat 29:145–159

    MathSciNet  Google Scholar 

  • Preda C, Saporta G (2005) PLS regression on a stochastic process. Comput Stat Data Anal 48(1):149–158

    MathSciNet  MATH  Google Scholar 

  • Preda C, Saporta G (2007) PCR and PLS for clusterwise regression on functional data. Springer, Berlin

    MATH  Google Scholar 

  • Preda C, Saporta G, Lévéder C (2007) PLS classification of functional data. Comput Stat 22(2):223–235

    MathSciNet  MATH  Google Scholar 

  • Qu X, Lee L-F (2015) Estimating a spatial autoregressive model with an endogenous spatial weight matrix. J Econ 184(2):209–232

    MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc 53(3):539–572

    MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis: methods and case studies. Springer, New York

    MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Reiss PT, Goldsmith J, Shang HL, Ogden RT (2017) Methods for scalar-on-function regression. Int Stat Rev 85(2):228–249

    MathSciNet  Google Scholar 

  • Schabenberger O, Gotway CA (2017) Statistical methods for spatial data analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Shin H (2009) Partial functional linear regression. J Stat Plan Inference 139(10):3405–3418

    MathSciNet  MATH  Google Scholar 

  • Su Y-R, Di C-Z, Hsu L (2017) Hypothesis testing in functional linear models. Biometrics 73(2):551–561

    MathSciNet  MATH  Google Scholar 

  • Tekbudak MY, Alfaro-Córdoba M, Maity A, Staicu A-M (2019) A comparison of testing methods in scalar-on-function regression. AStA Adv Stat Anal 103(3):411–436

    MathSciNet  MATH  Google Scholar 

  • Topa G (2001) Social interactions, local spillovers and unemployment. Rev Econ Stud 68(2):261–295

    MATH  Google Scholar 

  • Wang H, Gu J, Wang S, Saporta G (2019) Spatial partial least squares autoregression: algorithm and applications. Chemom Intell Lab Syst 184:123–131

    Google Scholar 

  • Yao F, Müller H-G (2010) Functional quadratic regression. Biometrika 97(1):49–64

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Clayton MK, Townsend PA (2011) Functional concurrent linear regression model for spatial images. J Agric Biol Environ Stat 16(1):105–130

    MathSciNet  MATH  Google Scholar 

  • Zhang L, Baladandayuthapani V, Zhu H, Baggerly KA, Majewski T, Czerniak BA, Morris JS (2016) Functional CAR models for large spatially correlated functional datasets. J Am Stat Assoc 111(514):772–786

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanshan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was financially supported by the National Natural Science Foundation of China under Grant Nos. 71420107025 and 11701023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Saporta, G., Wang, H. et al. A robust spatial autoregressive scalar-on-function regression with t-distribution. Adv Data Anal Classif 15, 57–81 (2021). https://doi.org/10.1007/s11634-020-00384-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-020-00384-w

Keywords

Mathematics Subject classification

Navigation