Skip to main content
Log in

Influence of irregular geologies and inhomogeneity on SH-wave propagation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, a study is performed in an irregular earth crust, layered over a semi-infinite half-space under the effect of gravity. The irregularities at the interface are possible combinations of geometric shapes such as rectangular, paraboic and triangular notches. The aim of the study is to come up with the influence of these irregularities on the phase velocity of shear horizontal waves. The current work also explores how inhomogeneities affect SH-wave propagation. The medium is assumed to exhibit inhomogeneities as a function of depth. These functions are the product of a linear algebraic function and an exponential function of depth. By means of separation of variables and the substitution method, the equation of motion is reduced to the hypergeometric equation. Suitable boundary conditions are employed to derive a closed form of the dispersion equation. Numerical computations are performed to visualize the impact of irregularity and inhomogeneity. It is observed that the irregular interfaces and the inhomogeneity involved in the medium have a significant effect on SH-wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cooper, H.F.: Reflection and transmission of oblique plane waves at an interface between viscoelastic media. J. Acoust. Soc. Am. 42, 1064–1069 (1967)

    Article  Google Scholar 

  2. Shaw, R.P., Bugl, P.: The transmission of plane waves through layered linear viscoelastic media. J. Acoust. Soc. Am. 46(3B), 649–654 (1969)

    Article  Google Scholar 

  3. Bhattacharya, S.N.: Exact solution of SH-wave equation for inhomogeneous media. Bull. Seismol. Soc. Am. 60(6), 1847–1859 (1970)

    Google Scholar 

  4. Schoenberg, M.: Transmission and reflection of plane waves at an elastic-viscoelastic interface. Geophys. J. Int. 25, 35–47 (1971)

    Article  Google Scholar 

  5. Borcherdt, R.D.: Viscoelastic waves in layered media. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  6. Lockett, F.J.: The reflections and refractions of waves at an interface between visco-elastic materials. J. Mech. Phys. Solids 10, 53 (1962)

    Article  MathSciNet  Google Scholar 

  7. Gogna, M.L., Chander, S.: Reflection and transmission of SH-waves at an interface between anisotropic inhomogeneous elastic and viscoelastic half-spaces. Acta Geol. Pol. 33(4), 357–375 (1985)

    Google Scholar 

  8. Kanai, K.: The effect of solid viscosity of surface layer on the earthquake movements. Bull. Earthq. Res. Inst. 28, 31 (1950)

    Google Scholar 

  9. Cerveny, V.: Inhomogeneous harmonic plane waves in viscoelastic anisotropic media. Stud. Geophys. 48, 167–186 (2004)

    Article  Google Scholar 

  10. Wang, C.D., Wang, W.J., Lin, Y.T., Ruan, Z.W.: Wave propagation in an inhomogeneous transversely isotropic material obeying the generalized power law model. Arch. Appl. Mech. 82, 919–936 (2012)

    Article  Google Scholar 

  11. Guoquan, N., Jinxi, L., Xueqian, F., Zijun, A.: Shear horizontal (SH) waves propagating in piezoelectric–piezomagnetic bilayer system with an imperfect interface. Acta Mech. 223, 1999–2009 (2012)

    Article  MathSciNet  Google Scholar 

  12. Tomar, S.K., Kaur, J.: SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space. Acta Mech. 190, 1–28 (2007)

    Article  Google Scholar 

  13. Chattopadhyay, A., Gupta, S., Sharma, V., Kumari, P.: Reflection and refraction of plane quasi-P waves at a corrugated interface between distinct triclinic elastic half spaces. Int. J. Solids Struct. 46(17), 3241–3256 (2009)

    Article  Google Scholar 

  14. Vishwakarma, S.K., Gupta, S., Verma, A.K.: Torsional wave propagation in Earth’s crustal layer under the influence of imperfect interface. J. Vib. Control 20(3), 355–369 (2014)

    Article  MathSciNet  Google Scholar 

  15. Bullen, K.E.: The problem of the earth’s density variation. Bull. Seismol. Soc. Am. 30(3), 235–250 (1965)

    Google Scholar 

  16. Sari, C., Salk, M.: Analysis of gravity anomalies with hyperbolic density contrast: an application to the gravity data of western Anatolia. J. Balkan Geophys. Soc. 5(3), 87–96 (2002)

    Google Scholar 

  17. Dey, S., Mukherjee, S.P.: Love waves in granular medium over a half-space under gravity. J. Acoust. Soc. Am. 72(5), 1626–1630 (1982)

    Article  Google Scholar 

  18. Singh, A.K., Kumar, S., Chattopadhyay, A.: Propagation of torsional waves in a fiber composite layer lying over an initially stressed viscoelastic half-space. Int. J. Geomech. 16(1), 04015014 (2016)

    Article  Google Scholar 

  19. Sahu, S.A., Saroj, P.K., Paswan, B.: Shear waves in a heterogeneous fiber-reinforced layer over a half-space under gravity. Int. J. Geomech. 15(2), 04014048 (2015)

    Article  Google Scholar 

  20. Chattopadhyay, A., Gupta, S., Singh, A.K., Sahu, S.A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. Int. J. Eng. Sci. Technol. 1(1), 228–244 (2009)

    Google Scholar 

  21. Vishwakarma, S.K., Panigrahi, T.R., Kaur, R.: SH-wave propagation in linearly varying fiber-reinforced viscoelastic composite structure uninitial stress. Arab. J. Geosci. 12(2), 12:59 (2019)

    Article  Google Scholar 

  22. Fang, X.Q., Zhang, T.F., Li, H.Y.: Elastic-slip interface effect on dynamic response of a lined tunnel in a semi-infinite alluvial valley under SH waves. Tunn. Undergr. Space Technol. 74, 96–106 (2018)

    Article  Google Scholar 

  23. Li, B.L., Fang, X.Q., Yuan, R.J.: Predicting the crack open displacements of a partially debonded pipeline in rock mass under SH waves. Eng. Fail. Anal. 96, 80–87 (2019)

    Article  Google Scholar 

  24. Campillo, M.: Modelling of SH-wave propagation in an irregularly layered medium-application to seismic profiles near a dome. Geophys. Prospect. 35(3), 236–249 (1987)

    Article  Google Scholar 

  25. Biot, M.A.: Mechanics of Incremental Deformation. Wiley, New York (1965)

    Book  Google Scholar 

  26. Love, A.E.H.: Some Problems of Geo-dynamics. Cambridge University Press, London (1911)

    Google Scholar 

  27. Gubbins, D.: Seismology and Plate Tectonics. Cambridge University Press, Cambridge (1990)

    Google Scholar 

Download references

Acknowledgements

Authors extend their sincere thanks to SERB-DST, New Delhi, for providing financial support under Early Career Research Award with Ref. No. ECR/2017/001185. Authors are also thankful for providing DST-FIST grant with Ref. No. 337 to Department of Mathematics, BITS-Pilani, Hyderabad campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinderjit Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} q= & {} i \omega \frac{v_0}{\mu _0} \quad \hbox { where } \omega =c k \\ a_1= & {} 1+q \\ a_2= & {} a+q b \\ a_3= & {} \sqrt{d^2+4k^2} \\ a_4= & {} \frac{d+a_3}{2} \\ a_5= & {} \frac{a_2(d _3)+2k^2c^2/c_0^2}{2 a_2 a_3} \\ a_6= & {} \frac{-a_1 a_3}{a_2} \\ l_1= & {} l+\frac{g \rho _1}{2 \mu _1} \\ l_2= & {} \sqrt{4k^2l_1^2+l^2m^2} \\ l_3= & {} \frac{-lm+l_2}{2l_1} \\ l_4= & {} (ll_1^2m+l^2m^2-ll_1m^2+l_1^2l_2-l m l_2+l_1m l_2+2c_{01}k^2l_1^2(c/c_0)^2)/2l_1^2l_2 \\ l_5= & {} 1+\frac{(l-l_1)m}{l_1^2} \\ l_6= & {} \frac{-l_2}{l_1^2} \\ l_7= & {} \frac{l_2}{l_1} \\ a_{11}= & {} -a_4 U(a_5,1,a_6-a_3H)-a_3 a_5 U(1+a_5,2,a_6-a_3H) \\ a_{12}= & {} -a_4 L(-a_5,a_6-a_3H)-a_3L(-1-a_5,1,a_6-a_3H) \\ a_{21}= & {} e^{-a_4\epsilon h} U(a_5,1,a_6+a_3\epsilon h) \\ a_{22}= & {} e^{-a_4\epsilon h} L(-a_5,a_6+a_3\epsilon h) \\ a_{23}= & {} -e^{-l_3\epsilon h}U(l_4,l_5,l_6+l_7\epsilon h) \\ a_{31}= & {} (1+q)e^{-a_4\epsilon h}\left[ (-a_4+i \epsilon k h')U(a_5,1,a_6+a_3 \epsilon h)-a_3a_5U(1+a_5,2,a_6+a_3 \epsilon h)\right] \\ a_{32}= & {} (1+q)e^{-a_4\epsilon h}\left[ (-a_4+i \epsilon k h')L(-a_5,a_6+a_3 \epsilon h)-a_3L(-1-a_5,1,a_6+a_3 \epsilon h)\right] \\ a_{33}= & {} -\frac{\mu _1}{\mu _0}e^{-l_3\epsilon h}\left[ (-l_3+i \epsilon k h')U(l_4,l_5,l_6+l_7 \epsilon h)-l_4l_7U(1+l_4, 1+l_5,l_6+l_7 \epsilon h)\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Vishwakarma, S.K. & Panigrahi, T.R. Influence of irregular geologies and inhomogeneity on SH-wave propagation. Acta Mech 231, 1821–1836 (2020). https://doi.org/10.1007/s00707-019-02598-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02598-2

Navigation