Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest

Abstract

The significant progress in supramolecular chemistry since the end of last century includes the development of supramolecular gels. In particular, the spatiotemporal self-assembly of synthetic small gelator molecules has attracted increasing attention owing to their ability to achieve certain functional properties in a designated space at a designated time. Peptides conjugated with hydrophobic moieties are typical examples of supramolecular gelators (low molecular weight gelators, LMWGs), which can be designed or programmed to self-assemble to form nanofibers/nanosheets in response to a broad range of stimuli or microenvironments. In the last decade, several groups have reported that the self-assembly of small gelator molecules achieved inside living cells or on the surfaces of living cells induced selective cell death, which would lead to a novel therapeutic approach or a novel cell selection tool. This focused review outlines the self-assembly of small gelator molecules inside living cells that control cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Terech P, Weiss RG. Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev. 1997;97:3133–59.

    CAS  PubMed  Google Scholar 

  2. Dastidar P. Supramolecular gelling agents: can they be designed? Chem Soc Rev. 2008;37:2699–715.

    CAS  PubMed  Google Scholar 

  3. Hanabusa K, Suzuki M. Development of low-molecular-weight gelators and polymer-based gelators. Polym J 2014;46:776–82.

    CAS  Google Scholar 

  4. Hanabusa K, Suzuki M. Physical gelation by low-molecular-weight compounds and development of gelators. Bull Chem Soc Jpn. 2016;89:174–82.

    CAS  Google Scholar 

  5. Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003;21:1171–8.

    CAS  PubMed  Google Scholar 

  6. Das D, Dasgupta A, Roy S, Mitra RN, Debnath S, Das PK. Water gelation of an amino acid-based amphiphile. Chem Eur J. 2006;12:5068–74.

    CAS  PubMed  Google Scholar 

  7. Dasgupta A, Mondal JH, Das D. Peptide hydrogels. RSC Adv. 2013;3:9117–49.

    CAS  Google Scholar 

  8. Fleming S, Ulijn RV. Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev. 2014;43:8150–77.

    CAS  PubMed  Google Scholar 

  9. Du X, Zhou J, Shi J, Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev. 2015;115:13165–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular polymers in aqueous media. Chem Rev. 2016;116:2414–77.

    CAS  PubMed  Google Scholar 

  11. Ikeda A, Sonoda K, Ayabe M, Tamaru S, Nakashima T, Kimizuka N, et al. Gelation of ionic liquids with a low molecular-weight gelator showing t-gel above 100 degrees C. Chem Lett. 2001;11:1154–5.

    Google Scholar 

  12. Kimizuka N, Nakashima T. Spontaneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels. Langmuir. 2001;17:6759–61.

    CAS  Google Scholar 

  13. Hanabusa K, Fukui H, Suzuki M, Shirai H. Specialist gelator for ionic liquids. Langmuir. 2005;21:10383–90.

    CAS  PubMed  Google Scholar 

  14. Dutta S, Das D, Dasgupta A, Das PK. Amino acid based low-molecular-weight ionogels as efficient dye-adsorbing agents and templates for the synthesis of tio(2) nanoparticles. Chem Eur J. 2010;16:1493–505.

    CAS  PubMed  Google Scholar 

  15. Minakuchi N, Hoe K, Yamaki D, Ten-No S, Nakashima K, Goto M, et al. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids. Langmuir. 2012;28:9259–66.

    CAS  PubMed  Google Scholar 

  16. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci USA. 2000;97:6728–33.

    CAS  PubMed  Google Scholar 

  17. Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA. 2002;99:5133–8.

    CAS  PubMed  Google Scholar 

  18. Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 2002;20:16–21.

    CAS  PubMed  Google Scholar 

  19. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303:1352–5.

    CAS  PubMed  Google Scholar 

  20. Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, et al. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater. 2006;18:611.

    CAS  Google Scholar 

  21. Schneider A, Garlick JA, Egles C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PloS ONE. 2008;3:e1410.

  22. Lin BF, Megley KA, Viswanathan N, Krogstad DV, Drews LB, Kade MJ, et al. Ph-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds. J Mater Chem. 2012;22:19447–54.

    CAS  Google Scholar 

  23. Mujeeb A, Miller AF, Saiani A, Gough JE. Self-assembled octapeptide scaffolds for in vitro chondrocyte culture. Acta Biomater. 2013;9:4609–17.

    CAS  PubMed  Google Scholar 

  24. Mahler A, Reches M, Rechter M, Cohen S, Gazit E. Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater. 2006;18:1365.

    CAS  Google Scholar 

  25. Gao Y, Kuang Y, Guo ZF, Guo Z, Krauss IJ, Xu B. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc. 2009;131:13576–7.

    CAS  PubMed  Google Scholar 

  26. Liang GL, Yang ZM, Zhang RJ, Li LH, Fan YJ, Kuang Y, et al. Supramolecular hydrogel of a d-amino acid dipeptide for controlled drug release in vivo. Langmuir. 2009;25:8419–22.

    CAS  PubMed  Google Scholar 

  27. Nanda J, Banerjee A. Beta-amino acid containing proteolitically stable dipeptide based hydrogels: Encapsulation and sustained release of some important biomolecules at physiological ph and temperature. Soft Matter. 2012;8:3380–6.

    CAS  Google Scholar 

  28. Restu WK, Nishida Y, Yamamoto S, Ishii J, Maruyama T. Short oligopeptides for biocompatible and biodegradable supramolecular hydrogels. Langmuir 2018;34:8065–74.

    CAS  PubMed  Google Scholar 

  29. Hughes M, Debnath S, Knapp CW, Ulijn RV. Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles. Biomater Sci. 2013;1:1138–42.

    CAS  PubMed  Google Scholar 

  30. Debnath S, Shome A, Das D, Das PK. Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B. 2010;114:4407–15.

    CAS  PubMed  Google Scholar 

  31. Fukushima K, Liu S, Wu H, Engler AC, Coady DJ, Maune H, et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nat Commun. 2013;4:2861.

    PubMed  Google Scholar 

  32. Bai JK, Gong ZY, Wang JX, Wang CD. Enzymatic hydrogelation of self-assembling peptide i4k2 and its antibacterial and drug sustained-release activities. RSC Adv. 2017;7:48631–8.

    CAS  Google Scholar 

  33. Guler MO, Stupp SI. A self-assembled nanofiber catalyst for ester hydrolysis. J Am Chem Soc. 2007;129:12082–3.

    CAS  PubMed  Google Scholar 

  34. Fang WW, Zhang Y, Wu JJ, Liu C, Zhu HB, Tu T. Recent advances in supramolecular gels and catalysis. Chem Asian J. 2018;13:712–29.

    CAS  PubMed  Google Scholar 

  35. Love CS, Chechik V, Smith DK, Wilson K, Ashworth I, Brennan C. Synthesis of gold nanoparticles within a supramolecular gel-phase network. Chem Commun. 2005:1971–3.

  36. Adhikari B, Biswas A, Banerjee A. Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with au nanoparticles. Langmuir. 2012;28:1460–9.

    CAS  PubMed  Google Scholar 

  37. Wu ZX, Wang J, Han LL, Lin RQ, Liu HF, Xin HLL, et al. Supramolecular gel-assisted synthesis of double shelled co@coo@n-c/c nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. Nanoscale. 2016;8:4681–7.

    CAS  PubMed  Google Scholar 

  38. Nishida Y, Tanaka A, Yamamoto S, Tominaga Y, Kunikata N, Mizuhata M, et al. In situ synthesis of a supramolecular hydrogelator at an oil/water interface for stabilization and stimuli-induced fusion of microdroplets. Angew Chem Int Ed. 2017;56:9410–4.

    CAS  Google Scholar 

  39. Yoshimura I, Miyahara Y, Kasagi N, Yamane H, Ojida A, Hamachi I. Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip. J Am Chem Soc. 2004;126:12204–5.

    CAS  PubMed  Google Scholar 

  40. Yamaguchi S, Yoshimura L, Kohira T, Tamaru S, Hamachi I. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives. J Am Chem Soc. 2005;127:11835–41.

    CAS  PubMed  Google Scholar 

  41. Koshi Y, Nakata E, Yamane H, Hamachi I. A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc. 2006;128:10413–22.

    CAS  PubMed  Google Scholar 

  42. Wada A, Tamaru S, Ikeda M, Hamachi I. Mcm-enzyme-supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance. J Am Chem Soc. 2009;131:5321–30.

    CAS  PubMed  Google Scholar 

  43. Ikeda M, Ochi R, Wada A, Hamachi I. Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chem Sci. 2010;1:491–8.

    CAS  Google Scholar 

  44. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids. Nat Chem. 2014;6:511–8.

    CAS  PubMed  Google Scholar 

  45. Scott GG, McKnight PJ, Tuttle T, Ulijn RV. Tripeptide emulsifiers. Adv Mater. 2016;28:1381–16.

    CAS  PubMed  Google Scholar 

  46. Ray S, Das AK, Banerjee A. Ph-responsive, bolaamphiphile-based smart metallo-hydrogels as potential dye-adsorbing agents, water purifier, and vitamin b-12 carrier. Chem Mater. 2007;19:1633–9.

    CAS  Google Scholar 

  47. Adhikari B, Palui G, Banerjee A. Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter. 2009;5:3452–60.

    CAS  Google Scholar 

  48. Frederix P, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, et al. Exploring the sequence space for (tri-) peptide self-assembly to design and discover. Nat Chem. 2015;7:30–7.

    CAS  PubMed  Google Scholar 

  49. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995;16:1385–93.

    PubMed  Google Scholar 

  50. Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294:1684–8.

    CAS  PubMed  Google Scholar 

  51. Xing BG, Yu CW, Chow KH, Ho PL, Fu DG, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc. 2002;124:14846–7.

    CAS  PubMed  Google Scholar 

  52. Zhang Y, Gu HW, Yang ZM, Xu B. Supramolecular hydrogels respond to ligand-receptor interaction. J Am Chem Soc. 2003;125:13680–1.

    CAS  PubMed  Google Scholar 

  53. Yang ZM, Liang GL, Ma ML, Gao Y, Xu B. Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. J Mater Chem. 2007;17:850–4.

    CAS  Google Scholar 

  54. Koda D, Maruyama T, Minakuchi N, Nakashima K, Goto M. Proteinase-mediated drastic morphological change of peptide-amphiphile to induce supramolecular hydrogelation. Chem Commun 2010;46:979–81.

    CAS  Google Scholar 

  55. Maruyama T, Matsushita H, Shimada Y, Kamata I, Hanaki M, Sonokawa S, et al. Proteins and protein-rich biomass as environmentally friendly adsorbents selective for precious metal ions. Environ Sci Technol. 2007;41:1359–64.

    CAS  PubMed  Google Scholar 

  56. Maruyama T, Terashima Y, Takeda S, Okazaki F, Goto M. Selective adsorption and recovery of precious metal ions using protein-rich biomass as efficient adsorbents. Process Biochem. 2014;49:850–7.

    CAS  Google Scholar 

  57. WO/2010/013555.

  58. Yang Z, Liang G, Guo Z, Guo Z, Xu B. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew Chem Int Ed. 2007;46:8216–9.

    CAS  Google Scholar 

  59. Yang ZM, Xu KM, Guo ZF, Guo ZH, Xu B. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv Mater. 2007;19:3152–6.

    CAS  Google Scholar 

  60. Yamashita K, Azumano I, Mai M, Okada Y. Expression and tissue localization of matrix metalloproteinase 7 (matrilysin) in human gastric carcinomas. Implications for vessel invasion and metastasis. Int J Cancer. 1998;79:187–94.

    CAS  PubMed  Google Scholar 

  61. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.

    CAS  PubMed  Google Scholar 

  62. Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int. 2002;52:255–64.

    CAS  PubMed  Google Scholar 

  63. Welch AR, Holman CM, Browner MF, Gehring MR, Kan CC, Van Wart HE. Purification of human matrilysin produced in escherichia coli and characterization using a new optimized fluorogenic peptide substrate. Arch Biochem Biophys. 1995;324:59–64.

    CAS  PubMed  Google Scholar 

  64. Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc. 2015;137:770–5.

    CAS  PubMed  Google Scholar 

  65. Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA, Anderson HL, et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem. 2009;1:69–73.

    CAS  PubMed  Google Scholar 

  66. Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F, Patra M, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and rna. Science. 2016;351:173–6.

    CAS  PubMed  Google Scholar 

  67. Zhou J, Du XW, Yamagata N, Xu B. Enzyme-instructed self-assembly of small d-peptides as a multiple-step process for selectively killing cancer cells. J Am Chem Soc. 2016;138:3813–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang HM, Feng ZQQ, Wu DD, Fritzsching KJ, Rigney M, Zhou J, et al. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovarian cancer cells. J Am Chem Soc. 2016;138:10758–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Feng ZQQ, Wang HM, Chen XY, Xu B. Self-assembling ability determines the activity of enzyme-instructed self-assembly for inhibiting cancer cells. J Am Chem Soc. 2017;139:15377–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Feng Z, Han X, Wang H, Tang T, Xu B. Enzyme-instructed peptide assemblies selectively inhibit bone tumors. Chem. 2019;5:2442–9.

    CAS  PubMed  Google Scholar 

  71. Pires RA, Abul-Haija YM, Costa DS, Novoa-Carballal R, Reis RL, Ulijn RV, et al. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J Am Chem Soc. 2015;137:576–9.

    CAS  PubMed  Google Scholar 

  72. Kuang Y, Miki K, Parr CJC, Hayashi K, Takei I, Li J, et al. Efficient, selective removal of human pluripotent stem cells via ecto-alkaline phosphatase-mediated aggregation of synthetic peptides. Cell Chem Biol. 2017;24:685–94. e4.

    CAS  PubMed  Google Scholar 

  73. Yang ZM, Gu HW, Fu DG, Gao P, Lam JK, Xu B. Enzymatic formation of supramolecular hydrogels. Adv Mater. 2004;16:1440–4.

    CAS  Google Scholar 

  74. Ikeda M, Tanida T, Yoshii T, Hamachi I. Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv Mater. 2011;23:2819–22.

    CAS  PubMed  Google Scholar 

  75. Ikeda M. Stimuli-responsive supramolecular systems guided by chemical reactions. Polym J. 2019;51:371–80.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported partially by JSPS KAKENHI grant number 18K18976, 18H04556, and 19H05458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Maruyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, T., Restu, W.K. Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polym J 52, 883–889 (2020). https://doi.org/10.1038/s41428-020-0335-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0335-8

This article is cited by

Search

Quick links