Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure–function relationships of radical SAM enzymes

Abstract

Radical S-adenosyl-l-methionine (SAM) enzymes belong to a family of catalysts whose number of annotated sequences is still growing. Upon the one-electron reduction of a [Fe4S4] cluster, they can cleave SAM to produce a highly reactive 5′-deoxyadenosyl radical species. This radical species in turn triggers a wide variety of radical-based reactions on substrates ranging from small organic molecules to proteins, DNA or RNA. The challenging reactions they catalyse makes them very promising catalysts for diverse biotechnological applications. However, the high-energy intermediates involved require fine control of the chemistry by the protein matrix. Understanding their control mechanism is a prerequisite for a broader use of these enzymes as synthetic tools. Here I review some of the latest developments in the field, focusing on the structure–function relationship of a few examples for which three-dimensional structures, in vitro and spectroscopic data, as well as theoretical calculations, are available to better describe the close interaction between the chemistry performed and the tight control of the protein matrix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected examples of reactions catalysed by radical SAM enzymes.
Fig. 2: SAM cleavage.
Fig. 3: Radical SAM dehydratase and dehydrogenase.
Fig. 4: Radical SAM methyltransferase RlmN.
Fig. 5: Radical SAM 7-carboxy-7-deazaguanine synthase QueE.
Fig. 6: Radical SAM l-tryptophan lyase NosL.
Fig. 7: Examples of promising radical SAM enzymes.

Similar content being viewed by others

References

  1. Togo, H. Advanced Free Radical Reactions for Organic Synthesis (Elsevier Science, 2004).

  2. Frey, P. A., Hegeman, A. D. & Ruzicka, F. J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    CAS  PubMed  Google Scholar 

  3. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bridwell-Rabb, J., Grell, T. A. J. & Drennan, C. L. A Rich man, poor man story of S-adenosylmethionine and cobalamin revisited. Annu. Rev. Biochem. 87, 555–584 (2018).

    CAS  PubMed  Google Scholar 

  5. Stubbe, J. Binding site revealed of nature’s most beautiful cofactor. Science 266, 1663–1664 (1994).

    CAS  PubMed  Google Scholar 

  6. Martens, J. H., Barg, H., Warren, M. J. & Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).

    CAS  PubMed  Google Scholar 

  7. Frey, P. A. Lysine 2,3-aminomutase: is adenosylmethionine a poor man’s adenosylcobalamin? FASEB J. 7, 662–670 (1993).

    CAS  PubMed  Google Scholar 

  8. Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F. & Miller, N. E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001). This seminal paper describes radical SAM enzymes as a superfamily.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Akiva, E. et al. The Structure–Function Linkage Database. Nucleic Acids Res. 42, D521–D530 (2014).

    CAS  PubMed  Google Scholar 

  10. Begley, T. P., Xi, J., Kinsland, C., Taylor, S. & McLafferty, F. The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr. Opin. Chem. Biol. 3, 623–629 (1999).

    CAS  PubMed  Google Scholar 

  11. Miller, J. R. et al. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39, 15166–15178 (2000).

    CAS  PubMed  Google Scholar 

  12. Berteau, O., Guillot, A., Benjdia, A. & Rabot, S. A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J. Biol. Chem. 281, 22464–22470 (2006).

    CAS  PubMed  Google Scholar 

  13. Anton, B. P. et al. RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 1826–1831 (2008).

    CAS  PubMed  Google Scholar 

  14. Yan, F. et al. RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. J. Am. Chem. Soc. 132, 3953–3964 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, X. et al. Generation of the glycyl radical of the anaerobic Escherichia coli ribonucleotide reductase requires a specific activating enzyme. J. Biol. Chem. 270, 2443–2446 (1995).

    CAS  PubMed  Google Scholar 

  16. Rebeil, R. et al. Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180, 4879–4885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yokoyama, K. & Lilla, E. A. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products. Nat. Prod. Rep. 35, 660–694 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruszczycky, M. W., Ogasawara, Y. & Liu, H.-W. Radical SAM enzymes in the biosynthesis of sugar-containing natural products. Biochim. Biophys. Acta 1824, 1231–1244 (2012).

    CAS  PubMed  Google Scholar 

  19. Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front. Chem. 5, 87 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Jaeger, C. M. & Croft, A. K. Anaerobic radical enzymes for biotechnology. Chembioeng. Rev. 5, 143–162 (2018).

    CAS  Google Scholar 

  21. Broderick, W. E., Hoffman, B. M. & Broderick, J. B. Mechanism of radical initiation in the radical S-adenosyl-l-methionine superfamily. Acc. Chem. Res. 51, 2611–2619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vey, J. L. & Drennan, C. L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev. 111, 2487–2506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McGlynn, S. E. et al. Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the Hmd hydrogenase active site cofactor. J. Bacteriol. 192, 595–598 (2010).

    CAS  PubMed  Google Scholar 

  24. Kim, H. J., LeVieux, J., Yeh, Y.-C. & Liu, H. C3-deoxygenation of paromamine catalyzed by a radical S-adenosylmethionine enzyme: characterization of the enzyme AprD4 and its reductase partner AprD3. Angew. Chem. Int. Ed. 55, 3724–3728 (2016).

    CAS  Google Scholar 

  25. Dowling, D. P. et al. Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism. Nat. Chem. Biol. 10, 106–112 (2014).

    CAS  PubMed  Google Scholar 

  26. Bridwell-Rabb, J., Zhong, A., Sun, H. G., Drennan, C. L. & Liu, H.-W. A B12-dependent radical SAM enzyme involved in oxetanocin A biosynthesis. Nature 544, 322–326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fenwick, M. K. et al. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase. Nat. Commun. 6, 6480 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Walsby, C. J., Ortillo, D., Broderick, W. E., Broderick, J. B. & Hoffman, B. M. An anchoring role for FeS clusters: chelation of the amino acid moiety of. J. Am. Chem. Soc. 124, 11270–11271 (2002).

    CAS  PubMed  Google Scholar 

  29. Walsby, C. J. et al. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc. 124, 3143–3151 (2002).

    CAS  PubMed  Google Scholar 

  30. Layer, G., Moser, J., Heinz, D. W., Jahn, D. & Schubert, W.-D. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO J. 22, 6214–6224 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Frey, P. A. Travels with carbon-centered radicals. 5′-deoxyadenosine and 5′-deoxyadenosine-5′-yl in radical enzymology. Acc. Chem. Res. 47, 540–549 (2014).

    CAS  PubMed  Google Scholar 

  33. Wang, S. C. & Frey, P. A. Binding energy in the one-electron reductive cleavage of S-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme. Biochemistry 46, 12889–12895 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Canfield, J. M. & Warncke, K. Geometry of reactant centers in the Coii-substrate radical pair state of coenzyme B12-dependent ethanolamine deaminase determined by using orientation-selection-ESEEM spectroscopy. J. Phys. Chem. B 106, 8831–8841 (2002).

    CAS  Google Scholar 

  35. Maity, A. N. et al. Evidence for conformational movement and radical mechanism in the reaction of 4-thia-l-lysine with lysine 5,6-aminomutase. J. Phys. Chem. B 113, 12161–12163 (2009).

    CAS  PubMed  Google Scholar 

  36. LoBrutto, R. et al. 5′-Deoxyadenosine contacts the substrate radical intermediate in the active site of ethanolamine ammonia-lyase: 2H and 13C electron nuclear double resonance studies. Biochemistry 40, 9–14 (2001).

    CAS  PubMed  Google Scholar 

  37. Magnusson, O. T., Reed, G. H. & Frey, P. A. Characterization of an allylic analogue of the 5′-deoxyadenosyl radical: an intermediate in the reaction of lysine 2,3-aminomutase. Biochemistry 40, 7773–7782 (2001).

    CAS  PubMed  Google Scholar 

  38. Rohac, R. et al. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nat. Chem. 8, 491–500 (2016). Report on a radical-based reaction triggered and observed directly in crystallo.

    CAS  PubMed  Google Scholar 

  39. Horitani, M. et al. Why nature uses radical SAM enzymes so widely: electron nuclear double resonance studies of lysine 2,3-aminomutase show the 5′-dAdo* ‘free radical’ is never free. J. Am. Chem. Soc. 137, 7111–7121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller, S. A. & Bandarian, V. Analysis of electrochemical properties of S-adenosyl-l-methionine and implications for its role in radical SAM enzymes. J. Am. Chem. Soc. 141, 11019–11026 (2019).

    CAS  PubMed  Google Scholar 

  41. Goldman, P. J., Grove, T. L., Booker, S. J. & Drennan, C. L. X-ray analysis of butirosin biosynthetic enzyme BtrN redefines structural motifs for AdoMet radical chemistry. Proc. Natl Acad. Sci. USA 110, 15949–15954 (2013).

    CAS  PubMed  Google Scholar 

  42. Nicolet, Y., Zeppieri, L., Amara, P. & Fontecilla-Camps, J. C. Crystal structure of tryptophan lyase (NosL): evidence for radical formation at the amino group of tryptophan. Angew. Chem. Int. Ed. 53, 11840–11844 (2014).

    CAS  Google Scholar 

  43. Benjdia, A., Heil, K., Barends, T. R. M., Carell, T. & Schlichting, I. Structural insights into recognition and repair of UV-DNA damage by spore photoproduct lyase, a radical SAM enzyme. Nucleic Acids Res. 40, 9308–9318 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lepore, B. W., Ruzicka, F. J., Frey, P. A. & Ringe, D. The X-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale. Proc. Natl Acad. Sci. USA 102, 13819–13824 (2005).

    CAS  PubMed  Google Scholar 

  45. Goldman, P. J. et al. X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc. Natl Acad. Sci. USA 110, 8519–8524 (2013).

    CAS  PubMed  Google Scholar 

  46. Liu, W.-Q. et al. 1,2-Diol dehydration by the radical SAM enzyme AprD4: a matter of proton circulation and substrate flexibility. J. Am. Chem. Soc. 140, 1365–1371 (2018).

    CAS  PubMed  Google Scholar 

  47. Nicolet, Y., Amara, P., Mouesca, J.-M. & Fontecilla-Camps, J. C. Unexpected electron transfer mechanism upon AdoMet cleavage in radical SAM proteins. Proc. Natl Acad. Sci. USA 106, 14867–14871 (2009).

    CAS  PubMed  Google Scholar 

  48. Cosper, N. J., Booker, S. J., Ruzicka, F., Frey, P. A. & Scott, R. A. Direct FeS cluster involvement in generation of a radical in lysine 2,3-aminomutase. Biochemistry 39, 15668–15673 (2000).

    CAS  PubMed  Google Scholar 

  49. Horitani, M. et al. Radical SAM catalysis via an organometallic intermediate with an Fe-[5′-C]-deoxyadenosyl bond. Science 352, 822–825 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Byer, A. S. et al. Paradigm shift for radical S-adenosyl-l-methionine reactions: the organometallic intermediate omega is central to catalysis. J. Am. Chem. Soc. 140, 8634–8638 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, H. et al. The elusive 5′-deoxyadenosyl radical: captured and characterized by electron paramagnetic resonance and electron nuclear double resonance spectroscopies. J. Am. Chem. Soc. 141, 12139–12146 (2019). Observation and characterization of the long-sought-after 5′-deoxyadenosyl radical species.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, H. et al. Photoinduced electron transfer in a radical SAM enzyme generates an S-adenosylmethionine derived methyl radical. J. Am. Chem. Soc. 141, 16117–16124 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vey, J. L. et al. Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc. Natl Acad. Sci. USA 105, 16137–16141 (2008).

    CAS  PubMed  Google Scholar 

  54. Nicolet, Y. et al. Crystal structure of HydG from Carboxydothermus hydrogenoformans: a trifunctional [FeFe]-hydrogenase maturase. Chembiochem 16, 397–402 (2015).

    CAS  PubMed  Google Scholar 

  55. Sayler, R. I. et al. Trapping and electron paramagnetic resonance characterization of the 5′dAdo radical in a radical S-adenosyl methionine enzyme reaction with a non-native substrate. ACS Cent. Sci. 5, 1777–1785 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Toraya, T. Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Chem. Rev. 103, 2095–2127 (2003).

    CAS  PubMed  Google Scholar 

  57. Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D. & Eguchi, T. Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc. 129, 15147–15155 (2007).

    CAS  PubMed  Google Scholar 

  58. Szu, P., He, X., Zhao, L. & Liu, H. Biosynthesis of TDP-d-desosamine: identification of a strategy for C4 deoxygenation. Angew. Chem. Int. Ed. 44, 6742–6746 (2005).

    CAS  Google Scholar 

  59. Lv, M. et al. Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis. J. Am. Chem. Soc. 138, 6427–6435 (2016).

    CAS  PubMed  Google Scholar 

  60. Liu, W.-Q. et al. 1,2-Diol dehydration by the radical SAM enzyme AprD4: a matter of proton circulation and substrate flexibility. J. Am. Chem. Soc. 140, 1365–1371 (2018).

    CAS  PubMed  Google Scholar 

  61. Grove, T. L., Ahlum, J. H., Sharma, P., Krebs, C. & Booker, S. J. A consensus mechanism for radical SAM-dependent dehydrogenation? BtrN contains two [4Fe–4S] clusters. Biochemistry 49, 3783–3785 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Grell, T. A. J., Goldman, P. J. & Drennan, C. L. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290, 3964–3971 (2015).

    CAS  PubMed  Google Scholar 

  63. Yokoyama, K., Ohmori, D., Kudo, F. & Eguchi, T. Mechanistic study on the reaction of a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy. Biochemistry 47, 8950–8960 (2008).

    CAS  PubMed  Google Scholar 

  64. Hayon, E. & Simic, M. Acid-base properties of free-radicals in solution. Acc. Chem. Res. 7, 114–121 (1974).

    CAS  Google Scholar 

  65. Maiocco, S. J., Grove, T. L., Booker, S. J. & Elliott, S. J. Electrochemical resolution of the [4Fe–4S] centers of the AdoMet radical enzyme BtrN: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J. Am. Chem. Soc. 137, 8664–8667 (2015).

    CAS  PubMed  Google Scholar 

  66. Ruszczycky, M. W. & Liu, H. Mechanistic enzymology of the radical SAM enzyme DesII. Isr. J. Chem. 55, 315–324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Benitez-Paez, A., Villarroya, M. & Armengod, M.-E. The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA 18, 1783–1795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yan, F. & Fujimori, D. G. RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift. Proc. Natl Acad. Sci. USA 108, 3930–3934 (2011).

    CAS  PubMed  Google Scholar 

  69. Grove, T. L. et al. A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science 332, 604–607 (2011).

    CAS  PubMed  Google Scholar 

  70. Grove, T. L., Radle, M. I., Krebs, C. & Booker, S. J. Cfr and RlmN contain a single [4Fe–4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation. J. Am. Chem. Soc. 133, 19586–19589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Boal, A. K. et al. Structural basis for methyl transfer by a radical SAM enzyme. Science 332, 1089–1092 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, W., Lieder, K. W., Reed, G. H. & Frey, P. A. Observation of a second substrate radical intermediate in the reaction of lysine 2,3-aminomutase: a radical centered on the beta-carbon of the alternative substrate, 4-thia-l-lysine. Biochemistry 34, 10532–10537 (1995).

    CAS  PubMed  Google Scholar 

  73. McCusker, K. P. et al. Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-l-methionine methyl synthase RlmN trapped by mutagenesis. J. Am. Chem. Soc. 134, 18074–18081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Silakov, A. et al. Characterization of a cross-linked protein-nucleic acid substrate radical in the reaction catalyzed by RlmN. J. Am. Chem. Soc. 136, 8221–8228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Grove, T. L. et al. A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr. Nat. Chem. Biol. 9, 422–427 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Schwalm, E. L., Grove, T. L., Booker, S. J. & Boal, A. K. Crystallographic capture of a radical S-adenosylmethionine enzyme in the act of modifying tRNA. Science 352, 309–312 (2016). An elegant capture of an intermediate between a radical SAM and its tRNA substrate.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao, C., Dong, L. & Liu, Y. A QM/MM study of the catalytic mechanism of SAM methyltransferase RlmN from Escherichia coli. Proteins 85, 1967–1974 (2017).

    CAS  PubMed  Google Scholar 

  78. McCarty, R. M., Somogyi, A. & Bandarian, V. Escherichia coli QueD is a 6-carboxy-5,6,7,8-tetrahydropterin synthase. Biochemistry 48, 2301–2303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. McCarty, R. M., Somogyi, A., Lin, G., Jacobsen, N. E. & Bandarian, V. The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ(0) from guanosine 5′-triphosphate in four steps. Biochemistry 48, 3847–3852 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. McCarty, R. M., Krebs, C. & Bandarian, V. Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 52, 188–198 (2013).

    CAS  PubMed  Google Scholar 

  81. Zhu, W. & Liu, Y. Ring contraction catalyzed by the metal-dependent radical SAM enzyme: 7-carboxy-7-deazaguanine synthase from B. multivorans. Theoretical insights into the reaction mechanism and the influence of metal ions. ACS Catal. 5, 3953–3965 (2015).

    CAS  Google Scholar 

  82. Jaeger, C. M. & Croft, A. K. Radical reaction control in the AdoMet radical enzyme CDG synthase (QueE): consolidate, destabilize, accelerate. Chemistry 23, 953–962 (2017).

    CAS  Google Scholar 

  83. Zhang, Q. et al. Radical-mediated enzymatic carbon chain fragmentation-recombination. Nat. Chem. Biol. 7, 154–160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, Y. et al. Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. ACS Chem. Biol. 4, 855–864 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nicolet, Y. & Drennan, C. L. AdoMet radical proteins—from structure to evolution—alignment of divergent protein sequences reveals strong secondary structure element conservation. Nucleic Acids Res. 32, 4015–4025 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Quitterer, F., List, A., Eisenreich, W., Bacher, A. & Groll, M. Crystal structure of methylornithine synthase (PylB): insights into the pyrrolysine biosynthesis. Angew. Chem. Int. Ed. 51, 1339–1342 (2012).

    CAS  Google Scholar 

  87. Nicolet, Y. et al. X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J. Biol. Chem. 283, 18861–18872 (2008).

    CAS  PubMed  Google Scholar 

  88. Bhandari, D. M., Xu, H., Nicolet, Y., Fontecilla-Camps, J. C. & Begley, T. P. Tryptophan lyase (NosL): mechanistic insights from substrate analogues and mutagenesis. Biochemistry 54, 4767–4769 (2015).

    CAS  PubMed  Google Scholar 

  89. Ji, X., Li, Y., Ding, W. & Zhang, Q. Substrate-tuned catalysis of the radical S-adenosyl-l-methionine enzyme NosL involved in nosiheptide biosynthesis. Angew. Chem. Int. Ed. 54, 9021–9024 (2015).

    CAS  Google Scholar 

  90. Bhandari, D. M., Fedoseyenko, D. & Begley, T. P. Tryptophan lyase (NosL): a cornucopia of 5′-deoxyadenosyl radical mediated transformations. J. Am. Chem. Soc. 138, 16184–16187 (2016).

    CAS  PubMed  Google Scholar 

  91. Ding, W., Ji, X., Li, Y. & Zhang, Q. Catalytic promiscuity of the radical S-adenosyl-l-methionine enzyme NosL. Front. Chem. 4, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Ji, X. et al. Expanding radical SAM chemistry by using radical addition reactions and SAM analogues. Angew. Chem. Int. Ed. 55, 11845–11848 (2016).

    CAS  Google Scholar 

  93. Kuchenreuther, J. M. et al. A radical intermediate in tyrosine scission to the CO and CN– ligands of FeFe hydrogenase. Science 342, 472–475 (2013).

    CAS  PubMed  Google Scholar 

  94. Kriek, M., Martins, F., Challand, M. R., Croft, A. & Roach, P. L. Thiamine biosynthesis in Escherichia coli: identification of the intermediate and by-product derived from tyrosine. Angew. Chem. Int. Ed. 46, 9223–9226 (2007).

    CAS  Google Scholar 

  95. Sicoli, G. et al. Fine-tuning of a radical-based reaction by radical S-adenosyl-l-methionine tryptophan lyase. Science 351, 1320–1323 (2016). Trapping of an unexpected radical intermediate and its structural determination by EPR.

    CAS  PubMed  Google Scholar 

  96. Amara, P. et al. Radical S-adenosyl-l-methionine tryptophan lyase (NosL): how the protein controls the carboxyl radical CO2 migration. J. Am. Chem. Soc. 140, 16661–16668 (2018).

    CAS  PubMed  Google Scholar 

  97. Bhandari, D. M., Fedoseyenko, D. & Begley, T. P. Mechanistic studies on tryptophan lyase (NosL): identification of cyanide as a reaction product. J. Am. Chem. Soc. 140, 542–545 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yokoyama, K., Numakura, M., Kudo, F., Ohmori, D. & Eguchi, T. Characterization and mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. J. Am. Chem. Soc. 129, 15147–15155 (2007).

    CAS  PubMed  Google Scholar 

  99. Szu, P.-H., Ruszczycky, M. W., Choi, S., Yan, F. & Liu, H. Characterization and mechanistic studies of DesII: a radical S-adenosyl-l-methionine enzyme involved in the biosynthesis of TDP-d-desosamine. J. Am. Chem. Soc. 131, 14030–14042 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chang, C. H., Ballinger, M. D., Reed, G. H. & Frey, P. A. Lysine 2,3-aminomutase: rapid mix–freeze–quench electron paramagnetic resonance studies establishing the kinetic competence of a substrate-based radical intermediate. Biochemistry 35, 11081–11084 (1996).

    CAS  PubMed  Google Scholar 

  101. Bruender, N. A., Young, A. P. & Bandarian, V. Chemical and biological reduction of the radical SAM enzyme. Biochemistry 54, 2903–2910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Arcinas, A. J., Maiocco, S. J., Elliott, S. J., Silakov, A. & Booker, S. J. Ferredoxins as interchangeable redox components in support of MiaB, a radical S-adenosylmethionine methylthiotransferase. Protein Sci. 28, 267–282 (2019).

    CAS  PubMed  Google Scholar 

  103. Grove, T. L. et al. Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis. Biochemistry 52, 2874–2887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Walker, L. M., Kincannon, W. M., Bandarian, V. & Elliott, S. J. Deconvoluting the reduction potentials for the three [4Fe–4S] clusters in an AdoMet radical SCIFF maturase. Biochemistry 57, 6050–6053 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ayikpoe, R. et al. Spectroscopic and electrochemical characterization of the mycofactocin biosynthetic protein, MftC, provides insight into its redox flipping mechanism. Biochemistry 58, 940–950 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruszczycky, M. W., Zhong, A. & Liu, H.-W. Following the electrons: peculiarities in the catalytic cycles of radical SAM enzymes. Nat. Prod. Rep. 35, 615–621 (2018). A nice review highlighting the role of the redox partner in the efficient catalysis performed by radical SAM enzymes.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ji, X., Li, Y., Jia, Y., Ding, W. & Zhang, Q. Mechanistic Insights into the radical S-adenosyl-l-methionine enzyme NosL from a substrate analogue and the shunt products. Angew. Chem. Int. Ed. 55, 3334–3337 (2016).

    CAS  Google Scholar 

  108. Bhandari, D. M., Fedoseyenko, D. & Begley, T. P. Mechanistic studies on the radical SAM enzyme tryptophan lyase (NosL). Methods Enzymol. 606, 155–178 (2018).

    PubMed  Google Scholar 

  109. Liu, W., Zhang, Q. & Chen, S. Novel fluoronosiheptide and preparation method and application thereof. Chinese patent CN102453077A (2013).

  110. Wilcoxen, J., Bruender, N. A., Bandarian, V. & Britt, R. D. A radical intermediate in Bacillus subtilis QueE during turnover with the substrate analogue 6-carboxypterin. J. Am. Chem. Soc. 140, 1753–1759 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bruender, N. A. et al. 7-Carboxy-7-deazaguanine synthase: a radical S-adenosyl-l-methionine enzyme with polar tendencies. J. Am. Chem. Soc. 139, 1912–1920 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Qianzhu, H. et al. Reactivity of the nitrogen-centered tryptophanyl radical in the catalysis by the radical SAM enzyme NosL. Chem. Commun. 53, 344–347 (2016).

    Google Scholar 

  113. Benjdia, A., Heil, K., Winkler, A., Carell, T. & Schlichting, I. Rescuing DNA repair activity by rewiring the H-atom transfer pathway in the radical SAM enzyme, spore photoproduct lyase. Chem. Commun. 50, 14201–14204 (2014).

    CAS  Google Scholar 

  114. Kruger, T. et al. Conversion of serine-type aldehyde tags by the radical SAM protein AtsB from Methanosarcina mazei. Chembiochem 20, 2074–2078 (2019).

    PubMed  Google Scholar 

  115. Suess, C. J., Martins, F. L., Croft, A. K. & Jager, C. M. Radical stabilization energies for enzyme engineering: tackling the substrate scope of the radical enzyme QueE. J. Chem. Inf. Model. 59, 5111–5125 (2019).

    CAS  PubMed  Google Scholar 

  116. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Freeman, M. F., Helf, M. J., Bhushan, A., Morinaka, B. I. & Piel, J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).

    CAS  PubMed  Google Scholar 

  118. Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse d-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).

    CAS  Google Scholar 

  119. Morinaka, B. I. et al. Natural noncanonical protein splicing yields products with diverse beta-amino acid residues. Science 359, 779–782 (2018). An astonishing peptide modification performed by a radical SAM enzyme.

    CAS  PubMed  Google Scholar 

  120. Nordlund, P. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 75, 681–706 (2006).

    CAS  PubMed  Google Scholar 

  121. Kampmeier, J. A. Regioselectivity in the homolytic cleavage of S-adenosylmethionine. Biochemistry 49, 10770–10772 (2010).

    CAS  PubMed  Google Scholar 

  122. Dong, M. et al. Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis. Science 359, 1247–1250 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the Commissariat à l’Energie Atomique et aux Energies Alternatives for institutional support. Part of the work presented was supported by the Radis-Bio contract from the CEA/DRF-Impulsion program and the Agence Nationale pour la Recherche (ANR-16-CE29-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvain Nicolet.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolet, Y. Structure–function relationships of radical SAM enzymes. Nat Catal 3, 337–350 (2020). https://doi.org/10.1038/s41929-020-0448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0448-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing