Skip to main content

Advertisement

Log in

Transition Periods in the Diurnally-Varying Atmospheric Boundary Layer Over Land

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

A Correction to this article was published on 11 July 2020

This article has been updated

Abstract

The atmospheric boundary layer undergoes transitions between stable and convective states. Over land, in undisturbed conditions, these transitions occur daily in the morning and late afternoon or early evening. Though less well studied and presenting more challenges than the fully stable and fully convective states, such transitions have been the subject of growing interest over the last few decades. During transitions, all forcings are weak, and few simplifications are possible. Factors such as terrain, radiation, advection, and subsidence can seldom be safely neglected. Here, we review research on transitions over recent decades, with an emphasis on work published in Boundary-Layer Meteorology. The review is brief and inevitably reflects the interests and views of the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 11 July 2020

    In the original publication, Figures 1 and 2 are subject to Crown Copyright.

References

  • Acevedo OC, Fitzjarrald DR (2001) The early evening surface-layer transition: temporal and spatial variability. J Atmos Sci 58(17):2650–2667

    Google Scholar 

  • Angevine WM (1999) Entrainment results including advection and case studies from the Flatland boundary layer experiments. J Geophys Res 104(D26):30947–30963

    Google Scholar 

  • Angevine WM (2008) Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys 56:2–20. https://doi.org/10.2478/s11600-11007-10035-11601

    Article  Google Scholar 

  • Angevine WM, White AB, Avery SK (1994) Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Boundary-Layer Meteorol. 68:375–385

    Google Scholar 

  • Angevine WM, Grimsdell AW, Hartten LM, Delany AC (1998) The Flatland boundary-layer experiments. Bull Am Meteorol Soc 79:419–431

    Google Scholar 

  • Angevine WM, Klein Baltink H, Bosveld FC (2001) Observations of the morning transition of the convective boundary layer. Boundary-Layer Meteorol. 101:209–227

    Google Scholar 

  • Angevine WM, Bazile E, Legain D, Pino D (2014) Land surface spinup for episodic modeling. Atmos Chem Phys 14(4):8165–8172

    Google Scholar 

  • Angevine WM, Olson J, Kenyon JS, Gustafson WI, Endo S, Sušelj K, Turner DD (2018) Shallow cumulus in WRF parameterizations evaluated against LASSO large-eddy simulations. Mon Weather Rev 146:4303–4322

    Google Scholar 

  • Baas P, Bosveld FC, Lenderink G, van Meijgaard E, Holtslag AAM (2010) How to design single-column model experiments for comparison with observed nocturnal low-level jets. Q J R Meteorol Soc 136(648):671–684

    Google Scholar 

  • Barbaro E, de Arellano JV-G, Ouwersloot HG, Schröter JS, Donovan DP, Krol MC (2014) Aerosols in the convective boundary layer: shortwave radiation effects on the coupled land-atmosphere system. J Geophys Res Atmos. 119(10):5845–5863

    Google Scholar 

  • Barlow JF, Dunbar TM, Nemitz EG, Wood CR, Gallagher MW, Davies F, O’Connor EJ, Harrison RM (2011) Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos Chem Phys 11:2111–2125

    Google Scholar 

  • Barr AG, Betts AK (1997) Radiosonde boundary-layer budgets above a boreal forest. J Geophys Res 102:29,205–29,212

    Google Scholar 

  • Basu S, Vinuesa J-F, Swift A (2008) Dynamic LES modeling of a diurnal cycle. J Appl Meteorol Climatol. 47:1156–1174

    Google Scholar 

  • Beare RJ (2008) The role of shear in the morning transition boundary layer. Boundary-Layer Meteorol. 129(3):395–410

    Google Scholar 

  • Beare RJ, Edwards JM, Lapworth AJ (2006) Simulation of the observed evening transition and nocturnal boundary layers: large-eddy simulation. Q J R Meteorol Soc 132:81–99

    Google Scholar 

  • Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Ménard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 1: energy and water fluxes. Geosci Model Dev. 4(3):677–699

    Google Scholar 

  • Betts AK, Barr AG (1996) First international satellite land surface climatology field experiment 1987 sonde budget revisited. J Geophys Res 101(D18):23,285–23,288

    Google Scholar 

  • Beyrich F, Goersdorf U (1995) Composing the diurnal cycle of mixing height from simultaneous sodar and wind profiler measurements. Boundary-Layer Meteorol 76(999):387–394

    Google Scholar 

  • Blay-Carreras E, Pardyjak ER, Pino D, Alexander DC, Lohou F, Lothon M (2014a) Countergradient heat flux observations during the evening transition period. Atmos Chem Phys 14(17):9077–9085

    Google Scholar 

  • Blay-Carreras E, Pino D, Vilà-Guerau de Arellano J, van de Boer A, De Coster O, Darbieu C, Hartogensis O, Lohou F, Lothon M, Pietersen H (2014b) Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos Chem Phys 14(9):4515–4530

    Google Scholar 

  • Blay-Carreras E, Pardyjak ER, Pino D, Hoch SW, Cuxart J, Martínez D, Reuder J (2015) Lifted temperature minimum during the atmospheric evening transition. Atmos Chem Phys 15(12):6981–6991

    Google Scholar 

  • Blumberg WG, Turner DD, Cavallo SM, Gao J, Basara J, Shapiro A (2019) An analysis of the processes affecting rapid near-surface water vapor increases during the afternoon to evening transition in Oklahoma. J Appl Meteorol Climatol. 58(10):2217–2234

    Google Scholar 

  • Bony S, Stevens B (2018) Measuring area-averaged vertical motions with dropsondes. J Atmos Sci 76(3):767–783

    Google Scholar 

  • Bosveld F, Baas P, Steeneveld G-J, Holtslag AM, Angevine W, Bazile E, de Bruijn EF, Deacu D, Edwards J, Ek M, Larson V, Pleim J, Raschendorfer M, Svensson G (2014) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: results and process understanding. Boundary-Layer Meteorol 152(2):157–187

    Google Scholar 

  • Boutle I, Price J, Kudzotsa I, Kokkola H, Romakkaniemi S (2018) Aerosol-fog interaction and the transition to well-mixed radiation fog. Atmos Chem Phys 18:7827–7840

    Google Scholar 

  • Brown AR, Cederwall RT, Chlond A, Duynkerke PG, Golaz J-C, Khairoutdinov M, Lewellen DC, Lock AP, Macvean MK, Moeng C-H, Neggers RAJ, Siebesma AP, Stevens B (2002) Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J R Meteorol Soc 128:1075–1093

    Google Scholar 

  • Brown N, Weiland M, Hill A, Shipway B, Maynard C, Allen T, Rezny M (2015) A highly scalable Met Office NERC cloud model. In: Proceedings of the 3rd international conference on exascale applications and software, Edinburgh, UK2015, City, pp 132–137

  • Busse J, Knupp K (2012) Observed characteristics of the afternoon-evening boundary layer transition based on sodar and surface data. J Appl Meteorol Climatol. 51(3):571–582

    Google Scholar 

  • Carter DA, Gage KS, Ecklund WL, Angevine WM, Johnston PE, Riddle AC, Wilson J, Williams CR (1995) Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Science. 30(4):977–1001

    Google Scholar 

  • Conzemius R, Fedorovich E (2006) Dynamics of sheared convective boundary layer entrainment. Part II: evaluation of bulk model predictions of entrainment flux. J Atmos Sci 63:1179–1199

    Google Scholar 

  • Conzemius RJ, Fedorovich E (2008) A case study of convective boundary layer development during IHOP-2002: numerical simulations compared to observations. Mon Weather Rev 136:2305–2320

    Google Scholar 

  • Coulman CE (1978) Boundary-layer evolution and nocturnal inversion dispersal—part I. Boundary-Layer Meteorol 14:471–491

    Google Scholar 

  • Couvreux F, Bazile E, Canut G, Seity Y, Lothon M, Lohou F, Guichard F, Nilsson E (2016) Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign. Atmos Chem Phys 16(14):8983–9002

    Google Scholar 

  • Darbieu C, Lohou F, Lothon M, Vilà-Guerau de Arellano J, Couvreux F, Durand P, Pino D, Patton EG, Nilsson E, Blay-Carreras E, Gioli B (2015) Turbulence vertical structure of the boundary layer during the afternoon transition. Atmos Chem Phys 15(17):10071–10086

    Google Scholar 

  • de Lozar A, Mellado JP (2015) Mixing driven by radiative and evaporative cooling at the stratocumulus top. J Atmos Sci 72:4681–4700

    Google Scholar 

  • Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7:81–106

    Google Scholar 

  • Driedonks AGM (1982) Models and observations of the growth of the atmospheric boundary layer. Boundary-Layer Meteorol 23:283–306

    Google Scholar 

  • Edwards JM (2009) Radiative processes in the stable boundary layer: Part II. The development of the nocturnal boundary layer. Boundary-Layer Meteorol 131:127–146

    Google Scholar 

  • Edwards JM, Beare RJ, Lapworth AJ (2006) Simulation of the observed evening transition and nocturnal boundary layers: single-column modelling. Q J R Meteorol Soc 132:61–80

    Google Scholar 

  • Edwards JM, Basu S, Bosveld FC, Holtslag AAM (2014) The impact of radiation on the GABLS3 large-eddy simulation through the night and during the morning transition. Boundary-Layer Meteorol 152:189–211

    Google Scholar 

  • Efstathiou GA, Beare RJ, Osborne S, Lock A (2016) Grey zone simulations of the morning convective boundary layer development. J Geophys Res 121:4769–4782

    Google Scholar 

  • El Guernaoui O, Reuder J, Esau I, Wolf T, Maronga B (2019) Scaling the decay of turbulence kinetic energy in the free-convective boundary layer. Boundary-Layer Meteorol 173(1):79–97

    Google Scholar 

  • Fedorovich E, Gibbs JA, Shapiro A (2017) Numerical study of nocturnal low-level jets over gently sloping terrain. J Atmos Sci 74:2813–2834

    Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Garratt JR, Brost RA (1981) Radiative cooling rates within and above the nocturnal boundary layer. J Atmos Sci 38:2730–2746

    Google Scholar 

  • Glenn IB, Feingold G, Gristey JJ, Yamaguchi T (2019) Quantification of the radiative effect of aerosol-cloud-interactions in shallow continental cumulus clouds. J Atmos Sci. submitted

  • Grant ALM (1997) An observational study of the evening transition boundary layer. Q J R Meteorol Soc 123:657–677

    Google Scholar 

  • Grimsdell AW, Angevine WM (2002) Observations of the afternoon transition of the convective boundary layer. J Appl Meteorol 41(1):3–11

    Google Scholar 

  • Gustafson WI, Vogelmann AM, Cheng X, Endo S, Krishna B, Li Z, Toto T, Xiao H (2016a) Description of the LASSO Alpha 1 release. DOE Atmospheric Radiation Measurement Research Facility

  • Gustafson WI, Vogelmann AM, Cheng X, Endo SK, B., Li Z, Toto T, Xiao H (2016b) LASSO alpha 1 data bundles. 36° 36′ 18.0″ N, 97° 29′ 6.0″ W: southern great plains central facility (C1). ARM Data Archive: Oak Ridge, Tennessee, USA

  • Ha K-J, Mahrt L (2003) Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus 55A:317–327

    Google Scholar 

  • Harvey NJ, Hogan RJ, Dacre HF (2013) A method to diagnose boundary-layer type using Doppler lidar. Q J R Meteorol Soc 139:1681–1693

    Google Scholar 

  • Hogan RJ, Grant ALM, Illingworth AJ, Pearson GN, O’Connor EJ (2009) Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Q J R Meteorol Soc 135:635–643

    Google Scholar 

  • Holtslag AAM, van Meijgaard E, De Rooy WC (1995) A comparison of boundary layer diffusion schemes in unstable conditions over land. Boundary-Layer Meteorol 76:69–95

    Google Scholar 

  • Holtslag AAM, Svensson G, Baas P, Basu S, Beare RJ, Beljaars A, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernstroem M, van de Wiel BJH (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706

    Google Scholar 

  • Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2016) Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Boundary-Layer Meteorol 159(3):567–587

    Google Scholar 

  • Kumar V, Svensson G, Holtslag AAM, Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Climatol 49:1496–1516

    Google Scholar 

  • Lapworth A (2006) The morning transition of the nocturnal boundary layer. Boundary-Layer Meteorol 119(3):501–526

    Google Scholar 

  • LeMone MA (1978) The marine boundary layer. Workshop on the Planetary Boundary Layer. AMS, Boston

  • LeMone MA, Grossman RL, McMillen RT, Liou K-N, Ou SC, McKeen S, Angevine W, Ikeda K, Chen F (2002) Cases-97: late-morning warming and moistening of the convective boundary layer over the Walnut River watershed. Boundary-Layer Meteorol. 104:1–52

    Google Scholar 

  • LeMone MA, Ikeda K, Grossman RL, Rotach MW (2003) Horizontal variability of 2-m temperature at night during CASES-97. J Atmos Sci 60(20):2431–2449

    Google Scholar 

  • LeMone MA, Tewari M, Chen F, Dudhia J (2013) Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon Weather Rev 141:30–54

    Google Scholar 

  • LeMone MA, Angevine WM, Bretherton CS, Chen F, Dudhia J, Fedorovich E, Katsaros KB, Lenschow DH, Mahrt L, Patton EG, Sun J, Tjernstroem M, Weil J (2019) 100 Years of Progress in Boundary-Layer Meteorology, AMS Centennial Monograph. AMS, Boston

    Google Scholar 

  • Lenschow DH, Stankov BB, Mahrt L (1979) The rapid morning boundary-layer transition. J Atmos Sci 36:2108–2124

    Google Scholar 

  • Liu C, Fedorovich E, Huang J (2017) Revisiting entrainment relationships for shear-free and sheared convective boundary layers through large-eddy simulations. Q J R Meteorol Soc 144:2182–2195

    Google Scholar 

  • Liu C, Fedorovich E, Huang J, Hu X-M, Wang Y, Lee X (2019) Impact of aerosol shortwave radiative heating on entrainment in the atmospheric boundary layer: a large-eddy simulation study. J Atmos Sci 76:785–799

    Google Scholar 

  • Lothon M, Lenschow DH, Mayor SD (2009) Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Boundary-Layer Meteorol 132(2):205–226

    Google Scholar 

  • Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-layer late afternoon and sunset turbulence. Atmos Chem Phys 14(20):10931–10960

    Google Scholar 

  • Mahrt L (1981) The early evening boundary layer transition. Q J R Meteorol Soc 107:329–343

    Google Scholar 

  • Mahrt L (2017) The near-surface evening transition. Q J R Meteorol Soc 143:2940–2948

    Google Scholar 

  • Manners J, Edwards JM, Hill P, Thelen JC (2015) SOCRATES (Suite Of Community RAdiative Transfer codes based on Edwards and Slingo) Technical Guide, UK Met Office

  • Manninen AJ, Marke T, Tuononen M, O’Connor EJ (2018) Atmospheric boundary layer classification with Doppler lidar. J Geophys Res 123:8172–8189

    Google Scholar 

  • Mellado JP, van Heerwarden CC, Garcia JR (2016) Near-surface effects of free atmosphere stratification in free convection. Boundary-Layer Meteorol 159:69–95

    Google Scholar 

  • Nadeau DF, Pardyjak E, Higgins CW, Fernando HJS, Parlange MB (2011) A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Boundary-Layer Meteorol 141:301–324

    Google Scholar 

  • Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43(6):532–546

    Google Scholar 

  • Nilsson E, Lohou F, Lothon M, Pardyjak E, Mahrt L, Darbieu C (2016a) Turbulence kinetic energy budget during the afternoon transition—Part 1: observed surface TKE budget and boundary layer description for 10 intensive observation period days. Atmos Chem Phys 16(14):8849–8872

    Google Scholar 

  • Nilsson E, Lothon M, Lohou F, Pardyjak E, Hartogensis O, Darbieu C (2016b) Turbulence kinetic energy budget during the afternoon transition—Part 2: a simple TKE model. Atmos Chem Phys 16(14):8873–8898

    Google Scholar 

  • Pennell WT, LeMone MA (1974) An experimental study of turbulence structure in the fair-weather trade wind boundary layer. J Atmos Sci 31:1308–1323

    Google Scholar 

  • Pietersen HP, Vilà-Guerau de Arellano J, Augustin P, van de Boer A, de Coster O, Delbarre H, Durand P, Fourmentin M, Gioli B, Hartogensis O, Lohou F, Lothon M, Ouwersloot HG, Pino D, Reuder J (2015) Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings. Atmos Chem Phys 15(8):4241–4257

    Google Scholar 

  • Pino D, Jonker HJJ, vilà-Guerau de Arellano J J, Dosio A (2006) Role of shear and the inversion strength during sunset turbulence over land: characteristic length scales. Boundary-Layer Meteorol 121:537–556

    Google Scholar 

  • Price J (2019) On the formation and development of radiation fog: an observational study. Boundary-Layer Meteorol 172:167–197

    Google Scholar 

  • Rizza U, Miglietta MM, Degrazia GA, Acevedo OC, Marques Filho EP (2013) Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions. Phys A 392:4481–4490

    Google Scholar 

  • Román-Cascón C, Yagüe C, Mahrt L, Sastre M, Steeneveld GJ, Pardyjak E, van de Boer A, Hartogensis O (2015) Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study. Atmos Chem Phys 15(15):9031–9047

    Google Scholar 

  • Savijarvi H (2006) Radiative and turbulent heating rates in the clear-air boundary layer. Q J R Meteorol Soc 132:147–161

    Google Scholar 

  • Sharma V, Parlange MB, Calaf M (2017) Perturbations to the spatial and temporal characteristics of the diurnally-varying atmospheric boundary layer due to an extensive wind farm. Boundary-Layer Meteorol 162:255–282

    Google Scholar 

  • Smith EN, Gebauer JG, Klein PM, Fedorovich E, Gibbs JA (2019) The great plains low-level jet during PECAN: observed and simulated characteristics. Mon Weather Rev 147:1845–1869

    Google Scholar 

  • Sorbjan Z (1996) Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer. J Atmos Sci 53:2015–2024

    Google Scholar 

  • Sorbjan Z (1997) Decay of convective turbulence revisited. Boundary-Layer Meteorol 82:501–515

    Google Scholar 

  • Steeneveld GJ, Wokke MJJ, Groot Zwaaftink CD, Pijlman S, Heusinkveld BG, Jacobs AFG, Holtslag AAM (2010) Observations of the radiation divergence in the surface layer and its implication for its parameterization in numerical weather prediction models. J Geophys Res 115:D06107

    Google Scholar 

  • Stevens B (2002) Entrainment in stratocumulus-topped mixed layers. Q J R Meteorol Soc 128:2663–2690

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic, Cambridge

    Google Scholar 

  • Svensson G, Holtslag AAM, Kumar V, Mauritsen T, Steeneveld GJ, Angevine WM, Bazile E, Beljaars A, de Bruijn EIF, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single column models—the second GABLS experiment. Boundary-Layer Meteorol 140:177–206

    Google Scholar 

  • Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30:558–567

    Google Scholar 

  • Tucker SC, Senff CJ, Weickmann A, Brewer WA, Banta RM, Sandberg SJ, Law D, Hardesty RM (2009) Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J Atmos Ocean Technol 26:673–688

    Google Scholar 

  • Van Driel R, Jonker HJJ (2011) Convective boundary layers driven by nonstationary surface heat fluxes. J Atmos Sci 68:727–738

    Google Scholar 

  • van Hooijdonk IGS, Clercx JH, Abraham C, Holdsworth AM, Monahan AH, Vignon E, Moene AF, Baas P, van de Wiel BJH (2017) Near-surface temperature inversion growth rate during the onset of the stable boundary layer. J Atmos Sci 74:3433–3449

    Google Scholar 

  • van Ulden AP, Wieringa J (1996) Atmospheric boundary layer research at Cabauw. Boundary-Layer Meteorol 78:39–69

    Google Scholar 

  • Wilczak JM, Gossard EE, Neff WD, Eberhard WL (1996) Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. Boundary-Layer Meteorol 78:321–349

    Google Scholar 

  • Wildmann N, Rau GA, Bange J (2015) Observations of the early morning boundary-layer transition with small remotely-piloted aircraft. Boundary-Layer Meteorol 157(3):345–373

    Google Scholar 

  • Wingo SM, Knupp KR (2015) Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in Northern Alabama, USA. Boundary-Layer Meteorol 155(1):29–53

    Google Scholar 

  • Wyngaard JC (1983) Lectures on the planetary boundary layer. In: Lilly DK, Gal-Chen T (eds) Mesoscale meteorology—theories, observations, and models. D. Reidel, Dordrecht

    Google Scholar 

  • Wyngaard JC (2004) Toward numerical modeling in the “Terra Incognita”. J Atmos Sci 61:1816–1826

    Google Scholar 

Download references

Acknowledgements

The editors and referee are thanked for their careful reading and thoughtful comments, which improved the manuscript. William Gustafson, Satoshi Endo, and the LASSO team are acknowledged for the LES1 results used in figure 3. Ian Glenn, Graham Feingold, and Jake Gristey are thanked for providing the LES2 run in figure 3. M. LeMone is sponsored by NCAR, which is supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M. Angevine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angevine, W.M., Edwards, J.M., Lothon, M. et al. Transition Periods in the Diurnally-Varying Atmospheric Boundary Layer Over Land. Boundary-Layer Meteorol 177, 205–223 (2020). https://doi.org/10.1007/s10546-020-00515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00515-y

Keywords

Navigation