Skip to main content
Log in

Phase separation drives pairing of homologous chromosomes

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Pairing of homologous chromosomes is crucial for ensuring accurate segregation of chromosomes during meiosis. Molecular mechanisms of homologous chromosome pairing in meiosis have been extensively studied in the fission yeast Schizosaccharomyces pombe. In this organism, meiosis-specific noncoding RNA transcribed from specific genes accumulates at the respective gene loci, and chromosome-associated RNA–protein complexes mediate meiotic pairing of homologous loci through phase separation. Pairing of homologous chromosomes also occurs in somatic diploid cells in certain situations. For example, somatic pairing of homologous chromosomes occurs during the early embryogenesis in diptera, and relies on the transcription-associated chromatin architecture. Earlier models also suggest that transcription factories along the chromosome mediate pairing of homologous chromosomes in plants. These studies suggest that RNA bodies formed on chromosomes mediate the pairing of homologous chromosomes. This review summarizes lessons from S. pombe to provide general insights into mechanisms of homologous chromosome pairing mediated by phase separation of chromosome-associated RNA–protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbondanzieri EA, Meyer AS (2019) More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr Genet 65:691–694

    PubMed  CAS  Google Scholar 

  • AlHaj Abed J, Erceg J, Goloborodko A, Nguyen SC, McCole RB, Saylor W, Fudenberg G, Lajoie BR, Dekker J, Mirny LA, Wu CT (2019) Highly structured homolog pairing reflects functional organization of the Drosophila genome. Nat Commun 10:4485

    PubMed  PubMed Central  Google Scholar 

  • Aylon Y, Kupiec M (2004) DSB repair: the yeast paradigm. DNA Repair (Amst) 3:797–815

    CAS  Google Scholar 

  • Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    PubMed  PubMed Central  CAS  Google Scholar 

  • Barzel A, Kupiec M (2008) Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 9:27–37

    PubMed  CAS  Google Scholar 

  • Boeynaems S, Tompa P, Van Den Bosch L (2018) Phasing in on the cell cycle. Cell Div 13:1

    PubMed  PubMed Central  Google Scholar 

  • Bordelet H, Dubrana K (2019) Keep moving and stay in a good shape to find your homologous recombination partner. Curr Genet 65:29–39

    PubMed  CAS  Google Scholar 

  • Brown SD, Jarosinska OD, Lorenz A (2018) Genetic interactions between the chromosome axis-associated protein Hop1 and homologous recombination determinants in Schizosaccharomyces pombe. Curr Genet 64:1089–1104

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cain NE, Jahed Z, Schoenhofen A, Valdez VA, Elkin B, Hao H, Harris NJ, Herrera LA, Woolums BM, Mofrad MRK, Luxton GWG, Starr DA (2018) Conserved SUN-KASH interfaces mediate LINC complex-dependent nuclear movement and positioning. Curr Biol 28:3086–3097

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cannan WJ, Pederson DS (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol 231:3–14

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carmo-Fonseca M, Rino J (2011) RNA seeds nuclear bodies. Nat Cell Biol 13:110–112

    PubMed  CAS  Google Scholar 

  • Chacón MR, Delivani P, Tolić IM (2016) Meiotic nuclear oscillations are necessary to avoid excessive chromosome associations. Cell Rep 17:1632–1645

    PubMed  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y (1994) Telomere-led premeiotic chromosome movement in fission yeast Schizosaccharomyces pombe. Science 264:270–273

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Hiraoka Y (2001) Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Curr Biol 11:1618–1623

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins Bqt1 and Bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Haraguchi T, Hiraoka Y (2007) Another way to move chromosomes. Chromosoma 116:497–505

    PubMed  Google Scholar 

  • Chikashige Y, Yamane M, Okamasa K, Tsutsumi C, Kojidani T, Sato M, Haraguchi T, Hiraoka Y (2009) Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. J Cell Biol 187:413–427

    PubMed  PubMed Central  CAS  Google Scholar 

  • Clark MB, Mattick JS (2011) Long noncoding RNAs in cell biology. Semin Cell Dev Biol 22:366–376

    PubMed  CAS  Google Scholar 

  • Cook PR (1997) The transcriptional basis of chromosome pairing. J Cell Sci 110:1033–1040

    PubMed  CAS  Google Scholar 

  • Cooper JP, Watanabe Y, Nurse P (1998) Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 23:828–831

    Google Scholar 

  • Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85:745–759

    PubMed  CAS  Google Scholar 

  • Ding DQ, Chikashige Y, Haraguchi T, Hiraoka Y (1998) Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules as revealed by continuous observation of chromosomes and microtubules in living cells. J Cell Sci 111:701–712

    PubMed  CAS  Google Scholar 

  • Ding DQ, Yamamoto A, Haraguchi T, Hiraoka Y (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6:329–341

    PubMed  CAS  Google Scholar 

  • Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y (2006) Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. J Cell Biol 174:499–508

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ding DQ, Okamasa K, Yamane M, Tsutsumi C, Haraguchi T, Yamamoto M, Hiraoka Y (2012) Meiosis-specific noncoding RNA mediates robust pairing of homologous chromosomes in meiosis. Science 336:732–736

    PubMed  CAS  Google Scholar 

  • Ding DQ, Haraguchi T, Hiraoka Y (2013) The role of chromosomal retention of noncoding RNA in meiosis. Chromosome Res 21:665–672

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ding DQ, Matsuda A, Okamasa K, Nagahama Y, Haraguchi T, Hiraoka Y (2016) Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe. Chromosoma 125:205–214

    PubMed  CAS  Google Scholar 

  • Ding DQ, Okamasa K, Katou Y, Chikashige Y, Oya E, Nakayama J, Shirahige K, Haraguchi T, Hiraoka Y (2019) Chromosome-associated RNA-protein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nat Commun 10:5598

    PubMed  PubMed Central  CAS  Google Scholar 

  • Erceg J, AlHaj Abed J, Goloborodko A, Lajoie BR, Fudenberg G, Abdennur N, Imakaev M, McCole RB, Nguyen SC, Saylor W, Joyce EF, Senaratne TN, Hannan MA, Nir G, Dekker J, Mirny LA, Wu CT (2019) The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. Nat Commun 10:4486

    PubMed  PubMed Central  Google Scholar 

  • Fay MM, Anderson PJ (2018) The role of RNA in biological phase separations. J Mol Biol 430:4685–4701

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fung JC, Marshall WF, Dernburg A, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141:5–20

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gerton JL, Hawley RS (2005) Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet 6:477–487

    PubMed  CAS  Google Scholar 

  • Gelbart WM (1982) Synapsis-dependent allelic complementation at the decapentaplegic gene complex in Drosophila melanogaster. Proc Natl Acad Sci USA 79:2636–2640

    PubMed  CAS  Google Scholar 

  • Gelbart WM, Wu CT (1982) Interactions of zeste mutations with loci exhibiting transvection effects in Drosophila melanogaster. Genetics 102:179–189

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hao H, Starr DA (2019) SUN/KASH interactions facilitate force transmission across the nuclear envelope. Nucleus 10:73–80

    PubMed  PubMed Central  Google Scholar 

  • Hiraoka Y, Dernburg AF, Parmelee SJ, Rykowski MC, Agard DA, Sedat JW (1993) The onset of homologous pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120:591–600

    PubMed  CAS  Google Scholar 

  • Hiraoka Y, Dernburg AF (2009) The SUN rises on meiotic chromosome dynamics. Dev Cell 17:598–605

    PubMed  CAS  Google Scholar 

  • Hollingsworth NM, Gaglione R (2019) The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 65:631–641

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM (2017) Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169:216–228

    PubMed  CAS  Google Scholar 

  • Ip JY, Nakagawa S (2011) Long noncoding RNAs in nuclear bodies. Dev Growth Differ 54:44–54

    PubMed  Google Scholar 

  • Joyce EF, Erceg J, Wu CT (2016) Pairing and anti-pairing: a balancing act in the diploid genome. Curr Opin Genet Dev 37:119–128

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11:1624–1630

    PubMed  CAS  Google Scholar 

  • Keeney S, Lange J, Mohibullah N (2014) Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 48:187–214

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khosraviani N, Ostrowski LA, Mekhail K (2019) Roles for noncoding RNAs in spatial genome organization. Front Cell Dev Biol 7:336

    PubMed  PubMed Central  Google Scholar 

  • Lim B, Heist T, Levine M, Fukaya T (2018) Visualization of transvection in living Drosophila embryos. Mol Cell 70:287–296

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13:95–101

    PubMed  CAS  Google Scholar 

  • Miki F, Okazaki K, Shimanuki M, Yamamoto A, Hiraoka Y, Niwa O (2002) The 14-kDa dynein light chain-family protein Dlc1 is required for the regular oscillatory nuclear movement and efficient recombination during meiotic prophase in fission yeast. Mol Biol Cell 13:930–946

    PubMed  PubMed Central  CAS  Google Scholar 

  • Müller HP, Schaffner W (1990) Transcriptional enhancers can act in trans. Trends Genet 6:300–304

    PubMed  Google Scholar 

  • Nimmo ER, Pidoux AL, Perry PE, Allshire RC (1998) Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 23:825–828

    Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432

    PubMed  CAS  Google Scholar 

  • Parada LA, Sotiriou S, Misteli T (2004) Spatial genome organization. Exp Cell Res 296:64–70

    PubMed  CAS  Google Scholar 

  • Pederson T (2004) The spatial organization of the genome in mammalian cells. Curr Opin Genet Dev 14:203–209

    PubMed  CAS  Google Scholar 

  • Phillips CM, Dernburg AF (2006) A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev Cell 11:817–829

    PubMed  CAS  Google Scholar 

  • Piazza A, Heyer W (2019) Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 65:1333–1340

    PubMed  PubMed Central  CAS  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2:621–627

    PubMed  CAS  Google Scholar 

  • Shevtsov SP, Dundr M (2011) Nucleation of nuclear bodies by RNA. Nat Cell Biol 13:167–173

    PubMed  CAS  Google Scholar 

  • Shimanuki M, Miki F, Ding DQ, Chikashige Y, Hiraoka Y, Horio T, Niwa O (1997) A novel fission yeast gene, kms1+, is required for the formation of meiotic prophase-specific nuclear architecture. Mol Gen Genet 254:238–249

    PubMed  CAS  Google Scholar 

  • Viets K, Sauria MEG, Chernoff C, Rodriguez Viales R, Echterling M, Anderson C, Tran S, Dove A, Goyal R, Voortman L, Gordus A, Furlong EEM, Taylor J, Johnston RJ Jr (2019) Characterization of button loci that promote homologous chromosome pairing and cell-type-specific interchromosomal gene regulation. Dev Cell 51:341–356

    PubMed  CAS  Google Scholar 

  • Wu CT, Goldberg ML (1989) The Drosophila zeste gene and transvection. Trends Genet 5:189–194

    PubMed  CAS  Google Scholar 

  • Xu M, Cook PR (2008) Similar active genes cluster in specialized transcription factories. J Cell Biol 181:615–623

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145:1233–1249

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene–zygotene transition of meiosis. Annu Rev Genet 32:619–697

    PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (2015) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7:a016626

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to all the members who have been engaged in this series of studies in the group since 1991. This work was supported by grants from JSPS KAKENHI Grants JP17H01444, JP18H05533, and JP19K22389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Hiraoka.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraoka, Y. Phase separation drives pairing of homologous chromosomes. Curr Genet 66, 881–887 (2020). https://doi.org/10.1007/s00294-020-01077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-020-01077-9

Keywords

Navigation