Skip to main content
Log in

Application of Supercritical CO2 Treatment Enhances Enzymatic Hydrolysis of Sugarcane Bagasse

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study sought to investigate the effects caused by the application of supercritical CO2 treatment in the commercial cellulase Celluclast 1.5L. The influence of this treatment on the enzymatic hydrolysis of sugarcane bagasse (2% w v−1) and on the kinetic parameters was assessed in a central composite design (CCD). The results show that the application of supercritical treatment for 180 min at 40 °C and 300 bar causes an increase in 14.31% in total cellulase enzymatic activity (FPase). Furthermore, this treatment conditions also enhance in 73.63% (concentration of 1.176 g L−1) the concentration of fermentable sugars released during the enzymatic hydrolysis of sugarcane bagasse, with theoretical yield of cellulose hydrolysis of 17.56%. In addition, KM was reduced 3 times for the enzyme compared to the untreated enzyme. Thus, treatment with supercritical CO2 proved to be a green and attractive alternative for fermentable sugars release, since it resulted in enhancements of enzymatic activities of the cellulolytic complex and an increase in enzymatic hydrolysis degree of the sugarcane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  2. Rocha-Martín J, Martinez-Bernal C, Pérez-Cobas Y, Reyes-Sosa FM, García BD (2017) Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 244:48–56. https://doi.org/10.1016/j.biortech.2017.06.132

    Article  CAS  PubMed  Google Scholar 

  3. Álvarez C, Reyes-Sosa FM, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 9:149–156. https://doi.org/10.1111/1751-7915.12346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

    Article  CAS  Google Scholar 

  5. Santos VEN, Ely RN, Szklo AS, Magrini A Chemicals , electricity and fuels from biore fi neries processing Brazil ’ s sugarcane bagasse : production recipes and minimum selling prices. Renew Sust Energ Rev 53(2016):1443–1458

  6. Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sust Energ Rev 57:468–478. https://doi.org/10.1016/j.rser.2015.12.069

    Article  CAS  Google Scholar 

  7. Mohanty B, Abdullahi II (2016) Bioethanol production from lignocellulosic waste-a review. Biosci Biotechnol Res Asia 13:1153–1161

    Article  Google Scholar 

  8. C.R. Soccol, L.P. de S. Vandenberghe, A. B. P. Medeiros, S.G. Karp, M. Buckeridge, L.P. Ramos, A.P. Pitarelo, V. Ferreira-Leitão, L.M.F. Gottschalk, M.A. Ferrara, E.P. da Silva Bon, L.M.P. de Moraes, J. de A. Araújo, F.A.G. Torres, Bioethanol from lignocelluloses: status and perspectives in Brazil, Bioresour. Technol. 101 (2010) 4820–4825. https://doi.org/10.1016/j.biortech.2009.11.067

  9. A.M. Castro, N. Pereira, Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais, 33 (2010) 181–188

  10. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  PubMed  Google Scholar 

  11. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. https://doi.org/10.4061/2011/280696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Z, Lin X, Li P, Zhang J, Wang S, Ma H (2012) Effects of low intensity ultrasound on cellulase pretreatment. Bioresour Technol 117:222–227. https://doi.org/10.1016/j.biortech.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  13. Knez E, Markočič M, Leitgeb M, Primožič M, Knez Hrnčič M (2014) Škerget, industrial applications of supercritical fluids: a review. Energy. 77:235–243. https://doi.org/10.1016/j.energy.2014.07.044

    Article  CAS  Google Scholar 

  14. Wimmer Z, Zarevúcka M (2010) A review on the effects of supercritical carbon dioxide on enzyme activity. Int J Mol Sci 11:233–253. https://doi.org/10.3390/ijms11010233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hatami T, Meireles MAA, Ciftci ON (2019) Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: mathematical modeling and optimization. J Food Eng 241:18–25. https://doi.org/10.1016/J.JFOODENG.2018.07.036

    Article  CAS  Google Scholar 

  16. Kehili M, Kammlott M, Choura S, Zammel A, Zetzl C, Smirnova I, Allouche N, Sayadi S (2017) Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod Process 102:340–349. https://doi.org/10.1016/j.fbp.2017.02.002

    Article  CAS  Google Scholar 

  17. Moraes MN, Zabot GL, Meireles MAA (2015) Extraction of tocotrienols from annatto seeds by a pseudo continuously operated SFE process integrated with low-pressure solvent extraction for bixin production. J Supercrit Fluids 96:262–271. https://doi.org/10.1016/j.supflu.2014.09.007

    Article  CAS  Google Scholar 

  18. Soares JF, Dal Prá V, de Souza M, Lunelli FC, Abaide E, da Silva JRF, Kuhn RC, Martínez J, Mazutti MA (2016) Extraction of rice bran oil using supercritical CO2 and compressed liquefied petroleum gas. J Food Eng 170:58–63. https://doi.org/10.1016/J.JFOODENG.2015.09.016

    Article  CAS  Google Scholar 

  19. Krakowska A, Rafińska K, Walczak J, Buszewski B (2018) Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Ind Crop Prod 124:931–940. https://doi.org/10.1016/J.INDCROP.2018.08.004

    Article  CAS  Google Scholar 

  20. de Aguiar AC, da Fonseca Machado AP, Figueiredo Angolini CF, de Morais DR, Baseggio AM, Eberlin MN, Maróstica Junior MR, Martínez J (2019) Sequential high-pressure extraction to obtain capsinoids and phenolic compounds from biquinho pepper (Capsicum chinense). J Supercrit Fluids 150:112–121. https://doi.org/10.1016/J.SUPFLU.2019.04.016

    Article  Google Scholar 

  21. dos Santos P, Zabot GL, Meireles MAA, Mazutti MA, Martínez J (2016) Synthesis of eugenyl acetate by enzymatic reactions in supercritical carbon dioxide. Biochem Eng J 114:1–9. https://doi.org/10.1016/J.BEJ.2016.06.018

    Article  CAS  Google Scholar 

  22. Senyay-Oncel D, Yesil-Celiktas O (2015) Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2. Cellulose. 22:3619–3631. https://doi.org/10.1007/s10570-015-0780-2

    Article  CAS  Google Scholar 

  23. Peng Y-K, Sun L-L, Shi W, Long J-J (2016) Investigation of enzymatic activity, stability and structure changes of pectinase treated in supercritical carbon dioxide. J Clean Prod 125:331–340. https://doi.org/10.1016/j.jclepro.2016.03.058

    Article  CAS  Google Scholar 

  24. Habulin M, Šabeder S, Sampedro MA, Knez Ž (2008) Enzymatic synthesis of citronellol laurate in organic media and in supercritical carbon dioxide. Biochem Eng J 42:6–12. https://doi.org/10.1016/J.BEJ.2008.05.012

    Article  CAS  Google Scholar 

  25. R.M. Lukasik, A.C.M. Rita, Hydrothermal pretreatment using supercritical CO2 in the biorefinery context, in: Hydrothermal Process. Biorefineries Prod. Bioethanol High Added-Value Compd. Second Third Gener. Biomass, Springer International Publishing, 2017: pp. 353–376. https://doi.org/10.1007/978-3-319-56457-9_14

  26. Lv H, Yan L, Zhang M, Geng Z, Ren M, Sun Y (2013) Influence of supercritical CO 2 pretreatment of corn Stover with ethanol-water as co-solvent on lignin degradation. Chem Eng Technol 36:1899–1906. https://doi.org/10.1002/ceat.201300183

    Article  CAS  Google Scholar 

  27. Relvas FM, Morais ARC, Bogel-Lukasik R (2015) Selective hydrolysis of wheat straw hemicellulose using high-pressure CO2 as catalyst. RSC Adv 5:73935–73944. https://doi.org/10.1039/c5ra14632a

    Article  CAS  Google Scholar 

  28. Phan DT, Tan CS (2014) Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide. Bioresour Technol 167:192–197. https://doi.org/10.1016/j.biortech.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  29. Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280. https://doi.org/10.1016/j.biotechadv.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  30. Leitgeb M, Čolnik M, Primožič M, Zalar P, Cimerman NG, Knez Ž (2013) Activity of cellulase and α-amylase from Hortaea werneckii after cell treatment with supercritical carbon dioxide. J Supercrit Fluids 78:143–148. https://doi.org/10.1016/j.supflu.2013.03.029

    Article  CAS  Google Scholar 

  31. C.Y. Park, Y.W. Ryu, C. Kim, A. Univezzity, Kinetics and Rate of Enzymatic Hydrolysis of Cellulose in Supercritical Carbon Dioxide, 18 (2001) 475–478

  32. Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226. https://doi.org/10.1016/J.BEJ.2005.12.001

    Article  CAS  Google Scholar 

  33. Morais ARC, Lopes AMC, Bogel-Łukasik R (2014) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115:3–27. https://doi.org/10.1021/cr500330z

    Article  CAS  PubMed  Google Scholar 

  34. Senyay-Oncel D, Yesil-Celiktas O (2011) Activity and stability enhancement of α-amylase treated with sub- and supercritical carbon dioxide. J Biosci Bioeng 112:435–440. https://doi.org/10.1016/j.jbiosc.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  35. E.R. Gouveia, R.T. do Nascimento, A.M. Souto-Maior, G.J. de M. Rocha, Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar, Quim. Nova. 32 (2009) 1500–1503. https://doi.org/10.1590/S0100-40422009000600026

  36. C.S. A. Sluiter, B. Hames, R. Ruiz, J. Slui, and D.C. ter, D. Templeton, Determination of Structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP); Issue Date: April 2008; Revision Date: July 2011 (Version 07-08-2011) - 42618.pdf, Tech. Rep. NREL/ TP -510 -42618. (2008) 1–15. http://www.nrel.gov/biomass/pdfs/42618.pdf

  37. Baião Dias AL, da Cunha GN, dos Santos P, Meireles MAA, Martínez J (2018) Fusel oil: water adsorption and enzymatic synthesis of acetate esters in supercritical CO2. J Supercrit Fluids 142:22–31. https://doi.org/10.1016/J.SUPFLU.2018.05.026

    Article  Google Scholar 

  38. Rodrigues MI, Iemma AF (2014) Design of experiments and process optimization, 1st edn. CRC Press, Campinas

    Book  Google Scholar 

  39. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  40. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  41. Mandels M, Sternberg D (1976) Recent advances in cellulase technology. J Ferment Technol 54:267–286

    CAS  Google Scholar 

  42. Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256. https://doi.org/10.1016/j.biortech.2012.04.070

    Article  CAS  PubMed  Google Scholar 

  43. Chakraborty S, Kaushik N, Rao PS, Mishra HN (2014) High-pressure inactivation of enzymes: a review on its recent applications on fruit purees and juices. Compr Rev Food Sci Food Saf 13:578–596. https://doi.org/10.1111/1541-4337.12071

    Article  CAS  Google Scholar 

  44. Knez Ž, Leitgeb M, Primožič M (2015) Enzymatic reactions in supercritical fluids, in: Food Eng. Ser. Springer, Berlin, pp 185–215. https://doi.org/10.1007/978-3-319-10611-3_6

    Book  Google Scholar 

  45. G. Muratov, C. Kim, Enzymatic hydrolysis of cotton fibers in supercritical CO 2, (2002) 85–88

  46. Daza Serna LV, Orrego Alzate CE, Cardona Alzate CA (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. https://doi.org/10.1016/J.BIORTECH.2015.09.078

    Article  CAS  PubMed  Google Scholar 

  47. Wei GY, Gao W, Jin IH, Yoo SY, Lee JH, Chung CH, Lee JW (2009) Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol Bioprocess Eng 14:828–834. https://doi.org/10.1007/s12257-009-0029-8

    Article  CAS  Google Scholar 

  48. Benazzi T, Calgaroto S, Astolfi V, Dalla Rosa C, Oliveira JV, Mazutti MA (2013) Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzym Microb Technol 52:247–250. https://doi.org/10.1016/j.enzmictec.2013.02.001

    Article  CAS  Google Scholar 

  49. Fockink DH, Morais ARC, Ramos LP, Łukasik RM (2018) Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars. Energy. 151:536–544. https://doi.org/10.1016/j.energy.2018.03.085

    Article  CAS  Google Scholar 

  50. Toscan A, Morais ARC, Paixão SM, Alves L, Andreaus J, Camassola M, Dillon AJP, Lukasik RM (2017) High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: assessment of the effect of biomass composition on process efficiency. Bioresour Technol 224:639–647. https://doi.org/10.1016/j.biortech.2016.11.101

    Article  CAS  PubMed  Google Scholar 

  51. Dias ALB, dos Santos P, Martínez J (2018) Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: a review. J CO2 Util 23:159–178. https://doi.org/10.1016/J.JCOU.2017.11.011

    Article  CAS  Google Scholar 

  52. A. Baiker, Supercritical fluids in heterogeneous catalysis, (1999). https://doi.org/10.1021/cr970090z

  53. Balsan G, Astolfi V, Benazzi T, Meireles MAA, Maugeri F, Di Luccio M, Dal Prá V, Mossi AJ, Treichel H, Mazutti MA (2012) Characterization of a commercial cellulase for hydrolysis of agroindustrial substrates. Bioprocess Biosyst Eng 35:1229–1237. https://doi.org/10.1007/s00449-012-0710-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by FAPESP (grants nos. 08542-3/2019, 20630-4/2015, and 11932-7/2015), and CAPES (finance code 001). The authors thank CAPES for the scholarship provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Goldbeck.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Silvello, M.A., Martínez, J. & Goldbeck, R. Application of Supercritical CO2 Treatment Enhances Enzymatic Hydrolysis of Sugarcane Bagasse. Bioenerg. Res. 13, 786–796 (2020). https://doi.org/10.1007/s12155-020-10130-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10130-x

Keywords

Navigation