Skip to main content

Advertisement

Log in

Electric Near-field Modulations of Charged Deoxyribonucleic Acid Nucleobases

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Deoxyribonucleic acid (DNA) has been recently recognized as a promising material for nanophotonics due to its outstanding electro-optical tuning. Here using the realistic state-of-the-art quantum mechanical calculations, we carried out a systematic theoretical study on the electric near-field modulations of charged DNA nucleobases. Our results underline that electrical doping (the addition or removal of an electron) produces dramatic modulations to the electric near-field enhancements in the visible spectral range. Interestingly, electrical doping causes high-intensity electric near-field hotspot regions to emerge in the technologically relevant visible spectral range. Our results unveil electric near-field manipulation of DNA nucleobases, which might find applications in novel nanophotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WATSON JD, CRICK FHC (1953) . Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  2. Klug A (1974) . Nature 248(5451):787–788

    Article  CAS  PubMed  Google Scholar 

  3. Shendure J, Ji H (2008) . Nature Biotechnology 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  4. Gall JG (2016) . Nature Reviews Molecular Cell Biology 17(8):464–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tateishi-Karimata H, Sugimoto N (2014) . Nucleic acids research 42(14):8831–8844. 25013178[pmid]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matta CF, Castillo N, Boyd RJ (2006) . The Journal of Physical Chemistry B 110(1):563–578. PMID: 16471569

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Yan H (2017) . Nature 552(7683):34–35

    Article  CAS  PubMed  Google Scholar 

  8. Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B (2009) . Nature 461(7268):1248–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seeman NC, Sleiman HF (2017) Nature Reviews Materials, 3, 1, 17068

  10. Seeman NC (2003) . Materials Today 6(1):24–29

    Article  CAS  Google Scholar 

  11. Fan C, Li Q (2019) Small 15 26 1902586

  12. Liu S, Clever GH, Takezawa Y, Kaneko M, Tanaka K, Guo X, Shionoya M (2011) . Angewandte Chemie International Edition 50(38):8886–8890

    Article  CAS  PubMed  Google Scholar 

  13. Rothemund PWK (2006) . Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  14. Schneider F, Möritz N, Dietz H (2019). Science Advances 5 5

  15. Kosinski R, Mukhortava A, Pfeifer W, Candelli A, Rauch P, Saccà B (2019), vol 10. 1061

  16. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (2009) . Nature 459:414. EP –

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han D, Pal S, Liu Y, Yan H (2010) . Nature Nanotechnology 5(10):712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saccà B, Niemeyer CM (2012) . Angewandte Chemie International Edition 51(1):58–66

    Article  PubMed  CAS  Google Scholar 

  19. Zhang D. Y, Seelig G (2011) . Nature Chemistry 3(2):103–113

    Article  CAS  PubMed  Google Scholar 

  20. Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) . PLOS ONE 7(7):1–11

    CAS  Google Scholar 

  21. Zhou C , Duan X, Liu N (2015) . Nature Communications 6(1):8102

    Article  CAS  PubMed  Google Scholar 

  22. Urban M. J, Zhou C, Duan X, Liu N (2015) . Nano Letters 15(12):8392–8396

    Article  CAS  PubMed  Google Scholar 

  23. Liu N, Liedl T (2018) . Chemical Reviews 118(6):3032–3053 . PMID:29384370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Endres RG, Cox DL, Singh RRP (2004) . Rev Mod Phys 76:195–214

    Article  CAS  Google Scholar 

  25. Church GM, Gao Y, Kosuri S (2012) . Science 337(6102):1628–1628

    Article  CAS  PubMed  Google Scholar 

  26. Goldman N, Bertone P, Chen S, Dessimoz C, LeProust EM, Sipos B, Birney E (2013) ., vol 494. EP –

  27. Davis J (1996) . Art Journal 55(1):70–74

    Article  Google Scholar 

  28. Adleman L (1994) . Science 266(5187):1021–1024

    Article  CAS  PubMed  Google Scholar 

  29. Qian L, Winfree E (2011) . Science 332(6034):1196– 1201

    Article  CAS  PubMed  Google Scholar 

  30. Qian L, Winfree E, Bruck J (2011) . Nature 475(7356): 368–372

    Article  CAS  PubMed  Google Scholar 

  31. Berryman JT, Schilling T (2013) . Journal of Chemical Theory and Computation 9(1):679–686 . PMID:26589064

    Article  CAS  PubMed  Google Scholar 

  32. Tsolakidis A, Kaxiras E (2005) . The Journal of Physical Chemistry A 109(10):2373–2380. PMID: 16839008

    Article  CAS  PubMed  Google Scholar 

  33. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) . Annual Review of Physical Chemistry 60(1):217–239. PMID: 19012538

    Article  CAS  PubMed  Google Scholar 

  34. Saavedra JRM, García de Abajo FJ (2019) . ACS Photonics 6(4):932–938

    Article  CAS  Google Scholar 

  35. Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P, Sánchez-Portal D, García de Abajo FJ (2013) . ACS Nano 7(4):3635–3643. PMID: 23484678

    Article  CAS  PubMed  Google Scholar 

  36. Lauchner A, Schlather AE, Manjavacas A, Cui Y, McClain MJ, Stec GJ, García de Abajo FJ, Nordlander P, Halas NJ (2015) . Nano Letters 15(9):6208–6214 . PMID: 26244925

    Article  CAS  PubMed  Google Scholar 

  37. Runge E, Gross EKU (1984) . Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  38. Marques M, Gross E (2004) . Annual Review of Physical Chemistry 55(1):427–455 . PMID: 15117259

    Article  CAS  PubMed  Google Scholar 

  39. Stratmann RE, Scuseria GE, Frisch MJ (1998) . The Journal of Chemical Physics 109(19):8218–8224

    Article  CAS  Google Scholar 

  40. Burke K, Werschnik J, Gross EKU (2005) . The Journal of Chemical Physics 123(6):062–206

    Article  CAS  Google Scholar 

  41. Zhao, Jensen L, Schatz GC (2006) . Journal of the American Chemical Society 128(9):2911–2919. PMID: 16506770

    Article  CAS  PubMed  Google Scholar 

  42. Malola S, Lehtovaara L, Enkovaara J, Häkkinen H (2013) . ACS Nano 7(11):10263–10270 . PMID: 24107127

    Article  CAS  PubMed  Google Scholar 

  43. Yabana K, Bertsch GF (1996) . Phys Rev B 54:4484–4487

    Article  CAS  Google Scholar 

  44. Tussupbayev S, Govind N, Lopata K, Cramer CJ (2015) . Journal of Chemical Theory and Computation 11(3):PMID: 26579760

    Article  CAS  Google Scholar 

  45. Alejandro V, Pablo G-G, Johannes F, F.J. G-V, Angel R (2016). 5 409 3

  46. Mortensen JJ, Hansen LB, Jacobsen KW (2005) . Phys Rev B 71:035–109

    Article  CAS  Google Scholar 

  47. Enkovaara J et al (2010) . Journal of Physics: Condensed Matter 22(25):253202

    CAS  PubMed  Google Scholar 

  48. Walter M, Häkkinen H, Lehtovaara L, Puska M, Enkovaara J, Rostgaard C, Mortensen JJ (2008) . The Journal of Chemical Physics 128(24):244101

    Article  CAS  PubMed  Google Scholar 

  49. Larsen AH et al (2017) . Journal of Physics: Condensed Matter 29(27):273002

    Google Scholar 

  50. Becke AD (1993) . The Journal of Chemical Physics 98(7):5648–5652

    Article  CAS  Google Scholar 

  51. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) . The Journal of Chemical Physics 108 (11):4439–4449

    Article  CAS  Google Scholar 

  52. Rossi TP, Zugarramurdi A, Puska MJ, Nieminen RM (2015) . Phys Rev Lett 115:236804

    Article  CAS  PubMed  Google Scholar 

  53. Rossi TP, Kuisma M, Puska MJ, Nieminen RM, Erhart P (2017) . Journal of Chemical Theory and Computation 13(10):4779–4790 . PMID: 28862851

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research reported in this publication was supported by funding from Kuwait College of Science And Technology (KCST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junais Habeeb Mokkath.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokkath, J.H. Electric Near-field Modulations of Charged Deoxyribonucleic Acid Nucleobases. Plasmonics 15, 1411–1420 (2020). https://doi.org/10.1007/s11468-020-01163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01163-1

Keywords

Navigation