Skip to main content
Log in

Hydrothermal synthesis of H-ZSM-5 catalysts employing the mixed template method and their application in the conversion of methanol to light olefins

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A hydrothermal procedure was utilized to synthesize high silica H-ZSM-5 catalysts for application in methanol to olefin (MTO) reaction by partial and total substitution of tetrapropyl ammonium hydroxide (TPAOH) with equivalent amount of the less expensive tetrapropyl ammonium bromide (TPABr) template. Five H-ZSM-5 zeolites with a similar Si/Al ratio (200) were synthesized using various proportions of TPAOH and TPABr. The TPA+ concentration (0.04 M) and initial gel pH (10.5) were constant. The catalysts were characterized by TG–DTA, XRD, ICP, FE-SEM, BET, FT-IR and NH3-TPD techniques. The samples showed cubic morphology, but their particle sizes and shapes were different. The highest crystallinity were obtained by single template synthesis for MFI structure whereas using mixed template synthesis led to lower crystallinity and larger crystallite sizes. Increasing molar ratio of TPAOH in initial gel from 0.33 to 3 decreased the purity of H-ZSM-5, and also affected its crystallinity and particle size. The NH3-TPD results indicated that both TPAOH and TPABr templates exhibited almost the same effect on the acidity of the as-synthesized catalysts, whereas mixing the two templates increased the total acidity and decreased the content of strong acid site. The catalytic performance of all samples was evaluated in MTO reaction in a fixed-bed reactor at 480 °C and atmospheric pressure using feed containing a mixture of 50 wt% methanol in water with methanol WHSV of 0.9 h−1. All the catalysts exhibited approximately similar methanol conversion though their propylene selectivities and products distributions were greatly dependent on the template composition. This work verified that despite providing the same TPA+ and OH concentrations in the initial gel, the H-ZSM5 samples with different properties could form using diverse template combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    Article  CAS  Google Scholar 

  2. Bleken FL, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Conversion of methanol into light olefins over ZSM-5 zeolite: strategy to enhance propene selectivity. Appl Catal A Gen 447:178–185

    Article  CAS  Google Scholar 

  3. Khanmohammadi M, Amani S, Garmarudi AB, Niaei A (2016) Methanol-to-propylene process: perspective of the most important catalysts and their behavior. Chin J Catal 37:325–339

    Article  CAS  Google Scholar 

  4. Chen H, Wang Y, Meng F, Sun C, Li H, Wang Z, Gao F, Wang X, Wang S (2017) Aggregates of superfine ZSM-5 crystals: The effect of NaOH on the catalytic performance of methanol to propylene reaction. Microporous Mesoporous Mater 244:301–309

    Article  CAS  Google Scholar 

  5. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction. Microporous Mesoporous Mater 203:41–53

    Article  CAS  Google Scholar 

  6. Rahmani M, Taghizadeh M (2017) Synthesis optimization of mesoporous ZSM-5 through desilication- reassembly in the methanol-to-propylene reaction. Reac Kinet Mech Cat 122:409–432

    Article  CAS  Google Scholar 

  7. Ahmadpour J, Taghizadeh M (2015) Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide. C R Chim 18:834–847

    Article  CAS  Google Scholar 

  8. Rostamizadeh M, Taeb A (2015) Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP). J Ind Eng Chem 27:297–306

    Article  CAS  Google Scholar 

  9. Ghalbi-Ahangari M, Ranjbar PR, Rashidi A, Teymuri M (2017) The high selectivity of Ce-hierarchical SAPO-34 nanocatalyst for the methanol to propylene conversion process. Reac Kinet Mech Cat 122:1265–1279

    Article  CAS  Google Scholar 

  10. Javdani A, Ahmadpour J, Yaripour F (2019) Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review. Microporous Mesoporous Mater 284:443–458

    Article  CAS  Google Scholar 

  11. Zhang S, Zhang B, Gao Z, Han Y (2010) Ca modified ZSM-5 for high propylene selectivity from methanol. Reac Kinet Mech Cat 99:447–453

    CAS  Google Scholar 

  12. Chang CD, Chu CT-W, Socha RF (1984) Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2Al2O3. J Catal 86:289–296

    Article  CAS  Google Scholar 

  13. Rostamizadeh M, Yaripour F (2017) Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion. J Taiwan Inst Chem Eng 71:454–463

    Article  CAS  Google Scholar 

  14. Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H (2009) Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10:1506–1509

    Article  CAS  Google Scholar 

  15. Ahmadpour J, Taghizadeh M (2016) One-pot synthesis of hierarchically mesoporous ZSM-5 using different combinations of mesogenous templates. Synth React Inorg Met Org Chem 46:1133–1141

    Article  CAS  Google Scholar 

  16. Jabbari A, Abbasi A, Zargarnezhad H, Riazifar M (2017) A study on the effect of SiO2/Al2O3 ratio on the structure and performance of nano-sized ZSM-5 in methanol to propylene conversion. Reac Kinet Mech Cat 121:763–772

    Article  CAS  Google Scholar 

  17. Shao J, Fu T, Ma Q, Ma Z, Zhang C, Li Z (2019) Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous Mesoporous Mater 273:122–132

    Article  CAS  Google Scholar 

  18. Kim S, Park G, Woo MH, Kwak G, Kim SK (2019) Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catal 9:2880–2892

    Article  CAS  Google Scholar 

  19. Abrishamkar M, Azizi SN, Kazemian H (2011) Using Taguchi robust design method to develop an optimized synthesis procedure for nanocrystals of ZSM-5 zeolite. Z Anorg Allg Chem 637:154–159

    Article  CAS  Google Scholar 

  20. Petushkov A, Yoon S, Larsen SC (2011) Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Microporous Mesoporous Mater 137:92–100

    Article  CAS  Google Scholar 

  21. Argauer RJ, Landolt GR (1972) Crystalline zeolite ZSM-5 and method of preparing the same. US Patent 3702886

  22. Sang S, Chang F, Liu Z, He C, He Y, Xu L (2004) Difference of ZSM-5 zeolites synthesized with various templates. Catal Today 93:729–734

    Article  CAS  Google Scholar 

  23. Schwarz S, Kojima M, O'Connor CT (1991) Effect of tetraalkylammonium, alcohol and amine templates on the synthesis and high pressure propene oligomerisation activity of ZSM-type zeolites. Appl Catal A Gen 73:313–330

    Article  CAS  Google Scholar 

  24. Ma T, Zhang L, Song Y, Shang Y, Zhai Y, Gong Y (2018) A comparative synthesis of ZSM-5 with ethanol or TPABr template: distinction of Brønsted/Lewis acidity ratio and its impact on n-hexane cracking. Catal Sci Technol 8:1923–1935

    Article  CAS  Google Scholar 

  25. Fouad OA, Mohamed RM, Hassan MS (2006) Ibrahim IA. Effect of template type and template/silica mole ratio on the crystallinity of synthesized nanosized ZSM-5. Catal Today 116:82–87

    Article  CAS  Google Scholar 

  26. Aramburo LR, Karwacki L, Cubillas P, Asahina S, de Winter DM, Drury MR, Buurmans IL, Stavitski E, Mores D, Daturi M, Bazin P (2011) The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: the influence of the zeolite architecture. Chem-Eur J 17:13773–13781

    Article  CAS  PubMed  Google Scholar 

  27. Losch P, Boltz M, Bernardon C, Louis B, Palčić A, Valtchev V (2016) Impact of external surface passivation of nano-ZSM-5 zeolites in the methanol-to-olefins reaction. Appl Catal A Gen 509:30–37

    Article  CAS  Google Scholar 

  28. Khatamian M, Khandar AA, Haghighi M, Ghadiri M, Darbandi M (2010) Synthesis, characterization and acidic properties of nanopowder ZSM-5 type ferrisilicates in the Na+/K+ alkali system. Powder Technol 203:503–509

    Article  CAS  Google Scholar 

  29. Ye L, Cao F, Ying W, Fang D, Sun Q (2011) Effect of different TEAOH/DEA combinations on SAPO-34’s synthesis and catalytic performance. J Porous Mater 18:225–232

    Article  CAS  Google Scholar 

  30. Salmasi M, Fatemi S, Hashemi SJ (2012) MTO reaction over SAPO-34 catalysts synthesized by combination of TEAOH and morpholine templates and different silica sources. Sci Iran 19:1632–1637

    Article  CAS  Google Scholar 

  31. Wang P, Lv A, Hu J, Xu JA, Lu G (2012) The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous Mesoporous Mater 152:178–184

    Article  CAS  Google Scholar 

  32. Chauhan NL, Das J, Jasra RV, Parikh PA, Murthy ZV (2012) Synthesis of small-sized ZSM-5 zeolites employing mixed structure directing agents. Mater Lett 74:115–117

    Article  CAS  Google Scholar 

  33. Alipour SM, Halladj R, Askari S (2014) Effects of the different synthetic parameters on the crystallinity and crystal size of nanosized ZSM-5 zeolite. Rev Chem Eng 30:289–322

    Article  CAS  Google Scholar 

  34. Soltanali S, Halladj R, Rashidi A, Bazmi M (2014) Mixed templates application in ZSM-5 nanoparticles synthesis: effect on the size, crystallinity, and surface area. Adv Powder Technol 25:1767–1771

    Article  CAS  Google Scholar 

  35. Abbasian S, Taghizadeh M (2014) Preparation of H-ZSM-5 Nano-zeolite using mixed template method and its activity evaluation for ethanol to DME reaction. Int J Nanosci Nanotechnol 10:171–180

    Google Scholar 

  36. Alipour SM, Halladj R, Askari S, BagheriSereshki E (2016) Low cost rapid route for hydrothermal synthesis of nano ZSM-5 with mixture of two, three and four structure directing agents. J Porous Mater 23:145–155

    Article  CAS  Google Scholar 

  37. Akbari B, Tavandashti MP, Zandrahimi M (2011) Particle size characterization of nanoparticles-a practicalapproach. Iran J Mater Sci Eng 8:48–56

    CAS  Google Scholar 

  38. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  39. Singh M, Kamble R, Viswanadham N (2008) Effect of crystal size on physico-chemical properties of ZSM-5. Catal Lett 120:288–293

    Article  CAS  Google Scholar 

  40. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types. Elsevier, Amsterdam

    Google Scholar 

  41. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. J Nat Gas Sci Eng 22:260–269

    Article  CAS  Google Scholar 

  42. Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1995) Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA) ZSM-5 crystals. Zeolites 15:611–619

    Article  CAS  Google Scholar 

  43. Grand J, Awala H, Mintova S (2016) Mechanism of zeolites crystal growth: new findings and open questions. Cryst Eng Comm 18:650–664

    Article  CAS  Google Scholar 

  44. Hur YG, Kester PM, Nimlos CT, Cho Y, Miller JT, Gounder R (2019) Influence of tetrapropylammonium and ethylenediamine structure-directing agents on the framework Al distribution in B-Al-MFI zeolites. Ind Eng Chem Res 58:11849–11860

    Article  CAS  Google Scholar 

  45. Qin Z, Lakiss L, Tosheva L, Gilson JP, Vicente A, Fernandez C, Valtchev V (2014) Comparative study of nano-ZSM-5 catalysts synthesized in OH and F media. Adv Func Mater 24:257–264

    Article  CAS  Google Scholar 

  46. Wang YR, Wang SF, Chang LC (2006) Hydrothermal synthesis of magadiite. Appl Clay Sci 33:73–77

    Article  CAS  Google Scholar 

  47. Wong WC, Au LT, Ariso CT, Yeung KL (2007) Effects of synthesis parameters on the zeolite membrane growth. J Membrane Sci 191:143–163

    Article  Google Scholar 

  48. Ahmadpour J, Taghizadeh M (2015) Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates. J Nat Gas Sci Eng 23:184–194

    Article  CAS  Google Scholar 

  49. Rostamizadeh M, Yaripour F (2016) Bifunctional and bimetallic Fe/ZSM-5 nanocatalysts for methanol to olefin reaction. Fuel 181:537–546

    Article  CAS  Google Scholar 

  50. Uguina MA, de Lucas A, Ruiz F, Serrano DP (1995) Synthesis of ZSM-5 from ethanol-containing systems. Influence of the gel composition. Ind Eng Chem Res 34:451–456

    Article  CAS  Google Scholar 

  51. Koekkoek AJJ, Xin H, Yang Q, Li C, Hensen EJM (2011) Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol. Microporous Mesoporous Mater 145:172–181

    Article  CAS  Google Scholar 

  52. Salmasi M, Fatemi S, Najafabadi AT (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17:755–761

    Article  CAS  Google Scholar 

  53. Jansen JC, Van der Gaag FJ, Van Bekkum H (1984) Identification of ZSM-type and other 5-ring containing zeolites by ir spectroscopy. Zeolites 4:369–372

    Article  CAS  Google Scholar 

  54. Gorzin F, Darian JT, Yaripour F, Mousavi SM (2019) Synthesis of highly crystalline nanosized HZSM-5 catalyst employing combined hydrothermal and sonochemical method: Investigation of ultrasonic parameters on physico-chemical and catalytic performance in methanol to propylene reaction. J Solid State Chem 271:8–22

    Article  CAS  Google Scholar 

  55. Rostamizadeh M, Yaripour F, Hazrati H (2018) High efficient mesoporous HZSM-5 nanocatalyst development through desilication with mixed alkaline solution for methanol to olefin reaction. J Porous Mater 25:1287–1299

    Article  CAS  Google Scholar 

  56. Lercher JA, Gründling C, Eder-Mirth G (1996) Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal Today 27:353–376

    Article  CAS  Google Scholar 

  57. Park JW, Seo G (2009) IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Appl Catal A: Gen 356:180–188

    Article  CAS  Google Scholar 

  58. Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O (2011) FTIR and 27Al MAS NMR analysis of the effect of framework Al-and Si-defects in micro-and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater 143:87–96

    Article  CAS  Google Scholar 

  59. Martins GV, Berlier G, Bisio C, Coluccia S, Pastore HO, Marchese L (2008) Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J Phys Chem C 112:7193–7200

    Article  CAS  Google Scholar 

  60. Zhou M, Wang F, Xiao W, Gao L, Xiao G (2016) The comparison of mesoporous HZSM-5 zeolite catalysts prepared by different mesoporous templates and their catalytic performance in the methanol to aromatics reaction. Reac Kinet Mech Cat 119:699–713

    Article  CAS  Google Scholar 

  61. Gorzin F, Darian JT, Yaripour F, Mousavi SM (2019) Novel hierarchical HZSM-5 zeolites prepared by combining desilication and steaming modification for converting methanol to propylene process. J Porous Mater 26:1407–1425

    Article  CAS  Google Scholar 

  62. Martin A, Berndt H (1994) Neutralization of HZSM-5 Brönsted acid sites by shaping with boehmite. React Kinet Mech Catal 52:405–411

    Article  CAS  Google Scholar 

  63. Zhang J, Zhang H, Yang X, Huang Z, Cao W (2011) Study on the deactivation and regeneration of the ZSM-5 catalyst used in methanol to olefins. J Nat Gas Chem 20:266–270

    Article  CAS  Google Scholar 

  64. Gorzin F, Darian JT, Yaripour F, Mousavi SM (2018) Preparation of hierarchical HZSM-5 zeolites with combined desilication with NaAlO2/tetrapropylammonium hydroxide and acid modification for converting methanol to propylene. RSC Adv 8:41131–41142

    Article  CAS  Google Scholar 

  65. Li H, Wang Y, Fan C, Sun C, Wang X, Wang C, Zhang X, Wang S (2018) Facile synthesis of a superior MTP catalyst: hierarchical micro-meso-macroporous ZSM-5 zeolites. Appl Catal A Gen 551:34–48

    Article  CAS  Google Scholar 

  66. Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B (2009) Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction. J Catal 265:1–7

    Article  CAS  Google Scholar 

  67. Beheshti MS, Behzad M, Ahmadpour J, Arabi H (2020) Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: Investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Microporous Mesoporous Mater 291:109699. https://doi.org/10.1016/j.micromeso.2019.109699

    Article  CAS  Google Scholar 

  68. Kharaji AG, Beheshti M, Repke JU, Tangestani-nejad S, Görke O, Godini HR (2019) Using response surface method to analyze the effect of hydrothermal post-treatment on the performance of extrudates HZSM-5 catalyst in the methanol to propylene reaction. Reac Kinet Mech Cat 127:375–390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Petrochemical Research and Technology Company of the National Petrochemical Company for the financial support of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Ahmadpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, M.S., Ahmadpour, J., Behzad, M. et al. Hydrothermal synthesis of H-ZSM-5 catalysts employing the mixed template method and their application in the conversion of methanol to light olefins. Reac Kinet Mech Cat 130, 493–518 (2020). https://doi.org/10.1007/s11144-020-01771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01771-2

Keywords

Navigation