Skip to main content
Log in

Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate framework-8 (ZIF-8), composed of Zn ions and imidazolate ligands, is a class of metal-organic frameworks, which possesses a similar structure as conventional aluminosilicate zeolites. This material exhibits inherent porous property, high loading capacity, and pH-sensitive degradation, as well as exceptional thermal and chemical stability. Extensive research effort has been devoted to relevant research aspects ranging from synthesis methods, property characterization to potential applications of ZIF-8. This review focuses on the recent development of ZIF-8 synthesis methods and its promising applications in drug delivery. The potential risks of using ZIF-8 for drug delivery are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheetham A K, Rao C N, Feller R K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications, 2006, (46): 4780–4795

    Google Scholar 

  2. Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1477–1504

    Article  CAS  PubMed  Google Scholar 

  3. Ferey G, Mellot-Draznieks C, Serre C, Millange F. Crystallized frameworks with giant pores: Are there limits to the possible? Accounts of Chemical Research, 2005, 38(4): 217–225

    Article  CAS  PubMed  Google Scholar 

  4. O’Keeffe M, Peskov M A, Ramsden S J, Yaghi O M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of Chemical Research, 2008, 41(12): 1782–1789

    Article  PubMed  CAS  Google Scholar 

  5. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939–943

    Article  CAS  PubMed  Google Scholar 

  6. Moggach S A, Bennett T D, Cheetham A K. The effect of pressure on zif-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angewandte Chemie International Edition, 2009, 48(38): 7087–7089

    Article  CAS  PubMed  Google Scholar 

  7. Fairen-Jimenez D, Moggach S A, Wharmby M T, Wright P A, Parsons S, Duren T. Opening the gate: Framework flexibility in ZIF-8 explored by experiments and simulations. Journal of the American Chemical Society, 2011, 133(23): 8900–8902

    Article  CAS  PubMed  Google Scholar 

  8. Wang F, Tan Y X, Yang H, Zhang H X, Kang Y, Zhang J. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chemical Communications, 2011, 47(20): 5828–5830

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Liang F, Bux H, Yang W, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 2010(1-2): 48–54

    Article  CAS  Google Scholar 

  10. Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 2010(1-2): 36–40

    Article  CAS  Google Scholar 

  11. McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir, 2010, 26(18): 14636–14641

    Article  CAS  PubMed  Google Scholar 

  12. Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. Journal of the American Chemical Society, 2009, 131(32): 11302–11303

    Article  CAS  PubMed  Google Scholar 

  13. Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud A A, Bats N. Catalysis of transesterification by a nonfunctionalized metal-organic framework: Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. Journal of the American Chemical Society, 2010, 132(35): 12365–12377

    Article  CAS  PubMed  Google Scholar 

  14. Wu H, Zhou W, Yildirim T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2007, 129(17): 5314–5315

    Article  CAS  PubMed  Google Scholar 

  15. Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 2009, 38(5): 1294–1314

    Article  CAS  PubMed  Google Scholar 

  16. Ma S, Zhou H C. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 2010, 46(1): 44–53

    Article  CAS  PubMed  Google Scholar 

  17. Harbuzaru B V, Corma A, Rey F, Jorda J L, Ananias D, Carlos L D, Rocha J. A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angewandte Chemie International Edition, 2009, 48(35): 6476–6479

    Article  CAS  PubMed  Google Scholar 

  18. Lu G, Hupp J T. Metal-organic frameworks as sensors: A ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases. Journal of the American Chemical Society, 2010, 132(23): 7832–7833

    Article  CAS  PubMed  Google Scholar 

  19. Lu D, An Y, Feng S, Li X, Fan A, Wang Z, Zhao Y. Imidazole-bearing polymeric micelles for enhanced cellular uptake, rapid endosomal escape, and on-demand cargo release. AAPS PharmS-ciTech, 2018, 19(6): 2610–2619

    Article  CAS  Google Scholar 

  20. Li X, Gao M, Xin K, Zhang L, Ding D, Kong D, Wang Z, Shi Y, Kiessling F, Lammers T, Cheng J, Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. Journal of Controlled Release, 2017, 260: 12–21

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional micelles dually responsive to hypoxia and singlet oxygen: Enhanced photodynamic therapy via interactively triggered photosensitizer delivery. ACS Applied Materials & Interfaces, 2018, 10(20): 17117–17128

    Article  CAS  Google Scholar 

  22. Meng X, Deng J, Liu F, Guo T, Liu M, Dai P, Fan A, Wang Z, Zhao Y. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Letters, 2019, 19(11): 7866–7876

    Article  CAS  PubMed  Google Scholar 

  23. Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rohani S, Isimjan T, Mohamed A, Kazemian H, Salem M, Wang T. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Frontiers of Chemical Science and Engineering, 2011, 6(1): 112–122

    Article  CAS  Google Scholar 

  25. Kida K, Okita M, Fujita K, Tanaka S, Miyake Y. Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013, 15(9): 1794

    Article  CAS  Google Scholar 

  26. Huang X C, Lin Y Y, Zhang J P, Chen X M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie International Edition, 2006, 45(10): 1557–1559

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J P, Zhu A X, Lin R B, Qi X L, Chen X M. Pore surface tailored sod-type metal-organic zeolites. Advanced Materials, 2011, 23(10): 1268–1271

    Article  CAS  PubMed  Google Scholar 

  28. Zhu A X, Lin R B, Qi X L, Liu Y, Lin Y Y, Zhang J P, Chen X M. Zeolitic metal azolate frameworks (MAFs) from ZnO/Zn(OH)2 and monoalkyl-substituted imidazoles and 1,2,4-triazoles: Efficient syntheses and properties. Microporous and Mesoporous Materials, 2012, 157: 42–49

    Article  CAS  Google Scholar 

  29. Cravillon J, Münzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 2009, 21(8): 1410–1412

    Article  CAS  Google Scholar 

  30. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano- and micro-crystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 2011, 23(8): 2130–2141

    Article  CAS  Google Scholar 

  31. Cravillon J, Schröder C A, Bux H, Rothkirch A, Caro J, Wiebcke M. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 2012, 14(2): 492–498

    Article  CAS  Google Scholar 

  32. Nune S K, Thallapally P K, Dohnalkova A, Wang C, Liu J, Exarhos G J. Synthesis and properties of nano zeolitic imidazolate frameworks. Chemical Communications, 2010, 46(27): 4878–4880

    Article  CAS  PubMed  Google Scholar 

  33. Bennett T D, Saines P J, Keen D A, Tan J C, Cheetham A K. Ballmilling-induced amorphization of zeolitic imidazolate frameworks (ZIFs) for the irreversible trapping of iodine. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(22): 7049–7055

    CAS  Google Scholar 

  34. He M, Yao J, Li L, Wang K, Chen F, Wang H. Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition. ChemPlusChem, 2013, 78(10): 1222–1225

    Article  CAS  PubMed  Google Scholar 

  35. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B. Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 359(6372): 206–210

    Article  CAS  PubMed  Google Scholar 

  36. Hu L, Yan Z, Zhang J, Peng X, Mo X, Wang A, Chen L. Surfactant aggregates within deep eutectic solvent-assisted synthesis of hierarchical ZIF-8 with tunable porosity and enhanced catalytic activity. Journal of Materials Science, 2019, 54(16): 11009–11023

    Article  CAS  Google Scholar 

  37. Chen Y, Tang S. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. Journal of Solid State Chemistry, 2019, 276: 68–74

    Article  CAS  Google Scholar 

  38. Troyano J, Carne-Sanchez A, Avci C, Imaz I, Maspoch D. Colloidal metal-organic framework particles: The pioneering case of ZIF-8. Chemical Society Reviews, 2019, 48(23): 5534–5546

    Article  CAS  PubMed  Google Scholar 

  39. Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47(7): 2071–2073

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka S, Kida K, Okita M, Ito Y, Miyake Y. Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chemistry Letters, 2012, 41(10): 1337–1339

    Article  CAS  Google Scholar 

  41. Gross A F, Sherman E, Vajo J J. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions (Cambridge, England), 2012, 41(18): 5458–5460

    Article  CAS  Google Scholar 

  42. Yao J, He M, Wang K, Chen R, Zhong Z, Wang H. High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm, 2013, 15(18): 3601

    Article  CAS  Google Scholar 

  43. He M, Yao J, Liu Q, Wang K, Chen F, Wang H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 2014, 184: 55–60

    Article  CAS  Google Scholar 

  44. Seoane B, Zamaro J M, Tellez C, Coronas J. Sonocrystallization of zeolitic imidazolate frameworks (ZIF-7, ZIF-8, ZIF-11 and ZIF-20). CrystEngComm, 2012, 14(9): 3103

    Article  CAS  Google Scholar 

  45. Cho H Y, Kim J, Kim S N, Ahn W S. High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous and Mesoporous Materials, 2013, 169: 180–184

    Article  CAS  Google Scholar 

  46. Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot. Journal of the American Chemical Society, 1986, 108(18): 5641–5642

    Article  CAS  Google Scholar 

  47. Son W J, Kim J, Kim J, Ahn W S. Sonochemical synthesis of MOF-5. Chemical Communications, 2008, (47): 6336–6338

    Google Scholar 

  48. Schlesinger M, Schulze S, Hietschold M, Mehring M. Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and. Microporous and Mesoporous Materials, 2010, 2010(1-2): 121–127

    Article  CAS  Google Scholar 

  49. Fernández-Bertrán J F, Hernández M P, Reguera E, Yee-Madeira H, Rodriguez J, Paneque A, Llopiz J C. Characterization of mechanochemically synthesized imidazolates of Ag+1, Zn+2, Cd+2, and Hg+2: Solid state reactivity of nd10 cations. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1612–1617

    Article  CAS  Google Scholar 

  50. Adams C J, Colquhoun H M, Crawford P C, Lusi M, Orpen A G. Solid-state interconversions of coordination networks and hydrogen-bonded salts. Angewandte Chemie International Edition, 2007, 119(7): 1142–1146

    Article  Google Scholar 

  51. Beldon P J, Fabian L, Stein R S, Thirumurugan A, Cheetham A K, Friscic T. Rapid room-temperature synthesis of zeolitic imidazo-late frameworks by using mechanochemistry. Angewandte Chemie International Edition, 2010, 49(50): 9640–9643

    Article  CAS  PubMed  Google Scholar 

  52. Braga D, Curzi M, Johansson A, Polito M, Rubini K, Grepioni F. Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. Angewandte Chemie International Edition, 2006, 45(1): 142–146

    Article  CAS  Google Scholar 

  53. Friscic T, Reid D G, Halasz I, Stein R S, Dinnebier R E, Duer M J. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angewandte Chemie International Edition, 2010, 49(4): 712–715

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka S, Kida K, Nagaoka T, Ota T, Miyake Y. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chemical Communications, 2013, 49(72): 7884–7886

    Article  CAS  PubMed  Google Scholar 

  55. Cao S, Bennett T D, Keen D A, Goodwin A L, Cheetham A K. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48(63): 7805–7807

    Article  CAS  PubMed  Google Scholar 

  56. Lewis D W, Ruiz-Salvador A R, Gómez A, Rodriguez-Albelo L M, Coudert F X, Slater B, Cheetham A K, Mellot-Draznieks C. Zeolitic imidazole frameworks: Structural and energetics trends compared with their zeolite analogues. CrystEngComm, 2009, 11(11): 2272

    Article  CAS  Google Scholar 

  57. Tan J C, Cheetham A K. Mechanical properties of hybrid inorganic-organic framework materials: Establishing fundamental structure-property relationships. Chemical Society Reviews, 2011, 40(2): 1059–1080

    Article  CAS  PubMed  Google Scholar 

  58. Tan J C, Bennett T D, Cheetham A K. Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9938–9943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cliffe M J, Mottillo C, Stein R S, Bucar D K, Friscic T. Accelerated aging: A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chemical Science (Cambridge), 2012, 3(8): 2495

    Article  CAS  Google Scholar 

  60. Mottillo C, Lu Y, Pham M H, Cliffe M J, Do T O, Friscic T. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 2013, 15(8): 2121

    Article  CAS  Google Scholar 

  61. Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009, 38(5): 1450–1459

    Article  CAS  PubMed  Google Scholar 

  62. Xiao D J, Bloch E D, Mason J A, Queen W L, Hudson M R, Planas N, Borycz J, Dzubak A L, Verma P, Lee K, Bonino F, Crocellà V, Yano J, Bordiga S, Truhlar D G, Gagliardi L, Brown C M, Long J R. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nature Chemistry, 2014, 6(7): 590–595

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen L T L, Le K K A, Truong H X, Phan N T S. Metal-organic frameworks for catalysis: The knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst. Catalysis Science & Technology, 2012, 2(3): 521–528

    Article  CAS  Google Scholar 

  64. Tran U P N, Le K K A, Phan N T S. Expanding applications of metal-organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catalysis, 2011, 1(2): 120–127

    Article  CAS  Google Scholar 

  65. Hu Y, Zheng S, Zhang F. Fabrication of MIL-100(Fe)@SiO2@-Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Frontiers of Chemical Science and Engineering, 2016, 10(4): 534–541

    Article  CAS  Google Scholar 

  66. Farha O K, Yazaydin A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, 2(11): 944–948

    Article  CAS  PubMed  Google Scholar 

  67. Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127–1129

    Article  CAS  PubMed  Google Scholar 

  68. Yang S, Lin X, Lewis W, Suyetin M, Bichoutskaia E, Parker J E, Tang C C, Allan D R, Rizkallah P J, Hubberstey P, Champness N R, Mark Thomas K, Blake A J, Schröder M. A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nature Materials, 2012, 11(8): 710–716

    Article  CAS  PubMed  Google Scholar 

  69. Al-Janabi N, Alfutimie A, Siperstein F R, Fan X. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework. Frontiers of Chemical Science and Engineering, 2016, 10(1): 103–107

    Article  CAS  Google Scholar 

  70. Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Frontiers of Chemical Science and Engineering, 2014, 8(3): 340–345

    Article  CAS  Google Scholar 

  71. Ma W, Jiang Q, Yu P, Yang L, Mao L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Analytical Chemistry, 2013, 85(15): 7550–7557

    Article  CAS  PubMed  Google Scholar 

  72. Liu S, Xiang Z, Hu Z, Zheng X, Cao D. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. Journal of Materials Chemistry, 2011, 21(18): 6649

    Article  CAS  Google Scholar 

  73. Liu S, Wang L, Tian J, Luo Y, Chang G, Asiri A M, Al-Youbi A O, Sun X. Application of zeolitic imidazolate framework-8 nanoparticles for the fluorescence-enhanced detection of nucleic acids. ChemPlusChem, 2012, 77(1): 23–26

    Article  CAS  Google Scholar 

  74. Ojha R P, Lemieux P A, Dixon P K, Liu A J, Durian D J. Statistical mechanics of a gas-fluidized particle. Nature, 2004, 427(6974): 521–523

    Article  CAS  PubMed  Google Scholar 

  75. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042

    Article  CAS  PubMed  Google Scholar 

  76. Eddaoudi M, Moler D B, Li H, Chen B, Reineke T M, O’Keeffe M, Yaghi O M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001, 34(4): 319–330

    Article  CAS  PubMed  Google Scholar 

  77. Chen B, Xiang S, Qian G. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research, 2010, 43(8): 1115–1124

    Article  CAS  PubMed  Google Scholar 

  78. Sun C Y, Qin C, Wang X L, Yang G S, Shao K Z, Lan Y Q, Su Z M, Huang P, Wang C G, Wang E B. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions (Cambridge, England), 2012, 41(23): 6906–6909

    Article  CAS  Google Scholar 

  79. Lu G, Li S, Guo Z, Farha O K, Hauser B G, Qi X, Wang Y, Wang X, Han S, Liu X, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 2012, 4(4): 310–316

    Article  CAS  PubMed  Google Scholar 

  80. Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2010, 132(51): 18030–18033

    Article  CAS  PubMed  Google Scholar 

  81. Broadley M R, White P J, Hammond J P, Zelko I, Lux A. Zinc in plants. New Phytologist, 2007, 173(4): 677–702

    Article  CAS  PubMed  Google Scholar 

  82. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom A M, Zou X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. Journal of the American Chemical Society, 2016, 138(3): 962–968

    Article  CAS  PubMed  Google Scholar 

  83. Wang H, Li T, Li J, Tong W, Gao C. One-pot synthesis of poly (ethylene glycol) modified zeolitic imidazolate framework-8 nanoparticles: Size control, surface modification and drug encapsulation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 568: 224–230

    Article  CAS  Google Scholar 

  84. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 2010, 9(2): 172–178

    Article  CAS  PubMed  Google Scholar 

  85. Soomro N A, Wu Q, Amur S A, Liang H, Ur Rahman A, Yuan Q, Wei Y. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent. Colloids and Surfaces. B, Biointerfaces, 2019, 182: 110364

    Article  CAS  PubMed  Google Scholar 

  86. Almeida P V, Shahbazi M A, Makila E, Kaasalainen M, Salonen J, Hirvonen J, Santos H A. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6(17): 10377–10387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Abednejad A, Ghaee A, Nourmohammadi J, Mehrizi A A. Hyaluronic acid/carboxylated zeolitic imidazolate framework film with improved mechanical and antibacterial properties. Carbohydrate Polymers, 2019, 222: 115033

    Article  CAS  PubMed  Google Scholar 

  88. Shu F, Lv D, Song X L, Huang B, Wang C, Yu Y, Zhao S C. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Advances, 2018, 8(12): 6581–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liedana N, Galve A, Rubio C, Tellez C, Coronas J. CAF@ZIF-8: One-step encapsulation of caffeine in MOF. ACS Applied Materials & Interfaces, 2012, 4(9): 5016–5021

    Article  CAS  Google Scholar 

  90. de Matas M, Edwards H G M, Lawson E E, Shields L, York P. Ft-Raman spectroscopic investigation of a pseudopolymorphic transition in caffeine hydrate. Journal of Molecular Structure, 1998, 1998(1-3): 97–104

    Article  Google Scholar 

  91. Chu C, Lin H, Liu H, Wang X, Wang J, Zhang P, Gao H, Huang C, Zeng Y, Tan Y, Liu G, Chen X. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Advanced Materials, 2017, 29(23): 1605928

    Article  CAS  Google Scholar 

  92. Robinson J T, Welsher K, Tabakman S M, Sherlock S P, Wang H, Luong R, Dai H. High performance in vivo near-IR (>1 mm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3(11): 779–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Advanced Materials, 2012, 24(13): 1722–1728

    Article  CAS  PubMed  Google Scholar 

  94. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547

    Article  CAS  PubMed  Google Scholar 

  95. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282

    Article  CAS  PubMed  Google Scholar 

  96. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 2011, 40(3): 1647–1671

    Article  CAS  PubMed  Google Scholar 

  97. Ren X, Chen H, Yang V, Sun D. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Frontiers of Chemical Science and Engineering, 2014, 8(3): 253–264

    Article  CAS  Google Scholar 

  98. Zhang S, Sun C, Zeng J, Sun Q, Wang G, Wang Y, Wu Y, Dou S, Gao M, Li Z. Ambient aqueous synthesis of ultrasmall PEGylated Cu2 x Se nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Advanced Materials, 2016, 28(40): 8927–8936

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Wu Y, Liu Y, Shen J, Lv L, Li L, Yang L, Zeng J, Wang Y, Zhang L W, et al. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 2016, 26(29): 5335–5344

    Article  CAS  Google Scholar 

  100. Gao F, Sun M, Xu L, Liu L, Kuang H, Xu C. Biocompatible cup-shaped nanocrystal with ultrahigh photothermal efficiency as tumor therapeutic agent. Advanced Functional Materials, 2017, 27(24): 1700605

    Article  CAS  Google Scholar 

  101. Song S, Shen H, Yang T, Wang L, Fu H, Chen H, Zhang Z. Indocyanine green loaded magnetic carbon nanoparticles for near infrared fluorescence/magnetic resonance dual-modal imaging and photothermal therapy of tumor. ACS Applied Materials & Interfaces, 2017, 9(11): 9484–9495

    Article  CAS  Google Scholar 

  102. Zhou B, Li Y, Niu G, Lan M, Jia Q, Liang Q. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Applied Materials & Interfaces, 2016, 8(44): 29899–29905

    Article  CAS  Google Scholar 

  103. Li Y, Xu N, Zhou J, Zhu W, Li L, Dong M, Yu H, Wang L, Liu W, Xie Z. Facile synthesis of a metal-organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6(11): 2918–2924

    Article  CAS  PubMed  Google Scholar 

  104. Li Y, Xu N, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis. ACS Applied Materials & Interfaces, 2018, 10(27): 22974–22984

    Article  CAS  Google Scholar 

  105. Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials, 2012, 33(22): 5603–5609

    Article  CAS  PubMed  Google Scholar 

  106. Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemophotothermal combination therapy. ACS Nano, 2013, 7(3): 2056–2067

    Article  CAS  PubMed  Google Scholar 

  107. Mordon S, Devoisselle J M, Soulie-Begu S, Desmettre T. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvascular Research, 1998, 55(2): 146–152

    Article  CAS  PubMed  Google Scholar 

  108. Wang T, Li S, Zou Z, Hai L, Yang X, Jia X, Zhang A, He D, He X, Wang K. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(23): 3914–3921

    Article  CAS  PubMed  Google Scholar 

  109. Juzeniene A, Peng Q, Moan J. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochemical & Photobiological Sciences, 2007, 6(12): 1234–1245

    Article  CAS  Google Scholar 

  110. Lu D, Tao R, Wang Z. Carbon-based materials for photodynamic therapy: A mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323

    Article  CAS  Google Scholar 

  111. Juarranz Á, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clinical & Translational Oncology, 2008, 10(3): 148–154

    Article  CAS  Google Scholar 

  112. Henderson B W, Dougherty T J. How does photodynamic therapy work? Photochemistry and Photobiology, 1992, 55(1): 145–157

    Article  CAS  PubMed  Google Scholar 

  113. Castano A P, Demidova T N, Hamblin M R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis and Photodynamic Therapy, 2004, 1(4): 279–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu D, You Y, Zeng F, Wang Y, Liang C, Feng H, Ma X. Disassembly of hydrophobic photosensitizer by biodegradable zeolitic imidazolate framework-8 for photodynamic cancer therapy. ACS Applied Materials & Interfaces, 2018, 10(18): 15517–15523

    Article  CAS  Google Scholar 

  115. Xie Z, Liang S, Cai X, Ding B, Huang S, Hou Z, Ma P, Cheng Z, Lin J. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Applied Materials & Interfaces, 2019, 11(35): 31671–31680

    Article  CAS  Google Scholar 

  116. Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101–2106

    Article  CAS  PubMed  Google Scholar 

  117. Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956

    Article  CAS  PubMed  Google Scholar 

  118. Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, Niu G, Yang H H, Chen X. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906

    Article  CAS  PubMed  Google Scholar 

  119. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

    Article  CAS  PubMed  Google Scholar 

  120. Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energy-free, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366

    Article  CAS  Google Scholar 

  121. Leader B, Baca Q J, Golan D E. Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 2008, 7(1): 21–39

    Article  CAS  PubMed  Google Scholar 

  122. Chen Z, Li N, Li S, Dharmarwardana M, Schlimme A, Gassensmith J J. Viral chemistry: The chemical functionalization of viral architectures to create new technology. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2016, 8(4): 512–534

    Article  PubMed  Google Scholar 

  123. Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Baglioni P, Buldyrev S V, Chen S H, Stanley H E. Energy landscape in protein folding and unfolding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3159–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Carmichael S P, Shell M S. Entropic (de)stabilization of surface-bound peptides conjugated with polymers. Journal of Chemical Physics, 2015, 143(24): 243103

    Article  CAS  PubMed  Google Scholar 

  125. Wang C, Luan J, Tadepalli S, Liu K K, Morrissey J J, Kharasch E D, Naik R R, Singamaneni S. Silk-encapsulated plasmonic biochips with enhanced thermal stability. ACS Applied Materials & Interfaces, 2016, 8(40): 26493–26500

    Article  CAS  Google Scholar 

  126. Liang K, Ricco R, Doherty C M, Styles M J, Bell S, Kirby N, Mudie S, Haylock D, Hill A J, Doonan C J, Falcaro P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015, 6(1): 7240

    Article  CAS  PubMed  Google Scholar 

  127. Alsaiari S K, Patil S, Alyami M, Alamoudi K O, Aleisa F A, Merzaban J S, Li M, Khashab N M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. Journal of the American Chemical Society, 2018, 140(1): 143–146

    Article  CAS  PubMed  Google Scholar 

  128. Wang J, Ye Y, Yu J, Kahkoska A R, Zhang X, Wang C, Sun W, Corder R D, Chen Z, Khan S A, et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12(3): 2466–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang J, Cao Z. Glucose-responsive insulin release: Analysis of mechanisms, formulations, and evaluation criteria. Journal of Controlled Release, 2017, 263: 231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, Ligler F S, Buse J B, Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8260–8265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen W H, Luo G F, Vazquez-Gonzalez M, Cazelles R, Sohn Y S, Nechushtai R, Mandel Y, Willner I. Glucose-responsive metal-organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano, 2018, 12(8): 7538–7545

    Article  CAS  PubMed  Google Scholar 

  132. Weed R I, Reed C F, Berg G. Is hemoglobin an essential structural component of human erythrocyte membranes? Journal of Clinical Investigation, 1963, 42(4): 581–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Ranji-Burachaloo H, Reyhani A, Gurr P A, Dunstan D E, Qiao G G. Combined fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale, 2019, 11(12): 5705–5716

    Article  CAS  PubMed  Google Scholar 

  134. Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. Rna-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li M, Tao Y, Shu Y, LaRochelle J R, Steinauer A, Thompson D, Schepartz A, Chen Z Y, Liu D R. Discovery and characterization of a peptide that enhances endosomal escape of delivered proteins in vitro and in vivo. Journal of the American Chemical Society, 2015, 137(44): 14084–14093

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SMF and ZW acknowledge the financial support from the Natural Science Foundation of Tianjin (No. 19JCYBJC28400). XLZ and DYS acknowledge the funding support from the Basic Research General Program of Shenzhen Science and Technology Innovation Commission in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Zhang, X., Shi, D. et al. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review. Front. Chem. Sci. Eng. 15, 221–237 (2021). https://doi.org/10.1007/s11705-020-1927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1927-8

Keywords

Navigation