Skip to main content
Log in

MnOx–CeO2 Derived from Mn–Ce-MOFs with Highly Efficient Removal of Formaldehyde

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of MnOx–CeO2 with different molar ratios of Mn/Ce had been synthesized via in-situ pyrolysis of Mn–Ce-MOFs precursor. The as-prepared catalysts were applied for catalytic oxidation of formaldehyde (HCHO) and also characterized by N2 adsorption–desorption, XRD, SEM, H2-TPR, O2-TPD and XPS. The result of catalytic test indicated that MnOx–CeO2 with a Mn/Ce molar ratio of 5:5 exhibited outstanding catalytic performance, which could achieve complete oxidation of HCHO at a temperature as low as 40 °C. Moreover, MnOx–CeO2 (5:5) possessed good stability and resistance to moisture. The HCHO conversion still retained over 99.0% as adding 5% H2O to the gas feed. The studies revealed that the close contact between Mn and Ce species in the Mn–Ce-MOFs precursor enhanced the interaction between MnOx and CeO2 through the calcination. The high specific surface area, easy low-temprature reducibility, abundant surface active oxygen and rich Mn4+ species were contributed to the excellent catalytic activity of MnOx–CeO2. Therefore, the MnOx–CeO2 catalyst possessed promising application prospect in removing HCHO at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miao L, Wang JL, Zhang PY (2019) Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl Surf Sci 466:441–453

    CAS  Google Scholar 

  2. Liu ZJ, Zhang DW, Wei TH, Wang LQ, Li XJ, Liu BX (2019) Adsorption characteristics of formaldehyde on nitrogen doped graphene-based single atom adsorbents: a DFT study. Appl Surf Sci 493:1260–1267

    CAS  Google Scholar 

  3. Zhu XB, Gao X, Qin R, Zeng YX, Qu RY, Zheng CH, Tu X (2015) Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Appl Catal B 170–171:293–300

    Google Scholar 

  4. Li X, Qian XR, An XH, Huang JW (2019) Preparation of a novel composite comprising biochcormaldehyde. Appl Surf Sci 487:1262–1270

    CAS  Google Scholar 

  5. Liu P, Wei GL, He HP, Liang XL, Chen HL, Xi YF, Zhu JX (2019) The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: catalytic deactivation and regeneration. Appl Surf Sci 464:287–493

    CAS  Google Scholar 

  6. Sun D, Wageh S, Al-Ghamdi AA, Le Y, Yu JG, Jiang CJ (2019) Pt/C@MnO2 composite hierarchical hollow microspheres for catalytic formaldehyde decomposition at room temperature. Appl Surf Sci 466:301–308

    CAS  Google Scholar 

  7. Deng JL, Song WY, Jing MZ, Yu TT, Zhao Z, Xu CM, Liu J (2020) A DFT and microkinetic study of HCHO catalytic oxidation mechanism over Pd/Co3O4 catalysts: the effect of metal-oxide interface. Catal Today 339:210–219

    CAS  Google Scholar 

  8. Li SP, Ezugwu C, Zhang SP, Xiong Y, Liu SW (2019) Co-doped MgAl-LDHs nanosheets supported Au nanoparticles for complete catalytic oxidation of HCHO at room temperature. Appl Surf Sci 487:260–271

    CAS  Google Scholar 

  9. Bai BY, Qiao Q, Li JH, Hao JM (2016) Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin J Catal 37:102–122

    CAS  Google Scholar 

  10. Guo JH, Lin CX, Jiang CJ, Zhang PY (2019) Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. Appl Sur Sci 475:237–255

    CAS  Google Scholar 

  11. Tang XF, Li YG, Huang XM, Xu YD, Zhu HQ, Wang J, Shen WJ (2006) MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal B 62:265–273

    CAS  Google Scholar 

  12. Zhao YL, Tian H, He JH, Yang QW (2015) Catalytic oxidation of formaldehyde over mesoporous MnOx–CeO2 catalysts. Int J Nanosci 14:1460028–1460032

    CAS  Google Scholar 

  13. Zhao JH, Tang ZC, Dong F, Zhang JY (2019) Controlled porous hollow Co3O4 polyhedral nanocages derived from metalorganic frameworks (MOFs) for toluene catalytic oxidation. Mol Catal 463:77–86

    CAS  Google Scholar 

  14. Wang H, Liu M, Guo S, Wang YF, Han X, Bai YY (2017) Efficient oxidation of o-xylene over CeO2 catalyst prepared from a Ce-MOF template: the promotion of K+ embedding substitution. Mol Catal 436:120–127

    CAS  Google Scholar 

  15. Jiang YW, Gao JH, Zhang Q, Liu ZY, Fu ML, Wu JL, Hu Y, Ye DQ (2019) Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx–CeO2 catalyst derived from MOF template. Chem Eng J 371:78–87

    CAS  Google Scholar 

  16. Sun H, Yu XL, Ma XY, Yang XQ, Lin MY, Ge MF (2019) MnOx–CeO2 catalyst derived from metal-organic frameworks for toluene oxidation. Catal Today. https://doi.org/10.1016/j.cattod.2019.05.062

    Article  Google Scholar 

  17. Zhang XD, Hou FL, Yang Y, Wang YX, Liu N, Chen D, Yang YQ (2017) A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation. Appl Surf Sci 423:771–779

    CAS  Google Scholar 

  18. Cao X, Tan C, Sindoro M, Zhang H (2017) Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 46:2660–2677

    CAS  PubMed  Google Scholar 

  19. Zhao J, Wang F, Su P, Li M, Chen J, Yang Q, Li C (2012) Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy. J Mater Chem 22:13328–13333

    CAS  Google Scholar 

  20. Chen X, Chen X, Yu EQ, Cai SC, Jia HP, Chen J, Liang P (2018) In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem Eng J 344:469–479

    CAS  Google Scholar 

  21. Chen GZ, Guo ZY, Zhao W, Gao DW, Li CC, Ye C, Sun GX (2017) Design of porous/hollow structured Ceria by partial thermal decomposition of Ce-MOF and selective etching. ACS Appl Mater Interfaces 9:39594–39601

    CAS  PubMed  Google Scholar 

  22. Lu SH, Li KL, Huang FL, Chen CC, Sun B (2017) Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Appl Surf Sci 400:277–282

    CAS  Google Scholar 

  23. Wang C, Chen TH, Liu HB, Xie JJ, Li MX, Han ZY, Zhao Y, He HY, Zou XH, Suib SL (2019) Promotional catalytic oxidation of airborne formaldehyde over mineral supported MnO2 at ambient temperatrue. Appl Clay Sci 182:105289–105300

    CAS  Google Scholar 

  24. Han ZY, Wang C, Zou XH, Chen TH, Dong SW, Zhao Y, Xie JJ, Liu HB (2020) Diatomite-supported birnessite-type MnO2 catalytic oxidation of formaldehyde: preparation, performance and mechanism. Appl Surf Sci 502:144201–144210

    Google Scholar 

  25. Guo ZY, Song LH, Xu TT, Gao DW, Li CC, Hu X (2019) CeO2-CuO bimetal oxides derived from Ce-based MOF and their difference in catalytic activities for CO oxidation. Mater Chem Phys 226:338–343

    CAS  Google Scholar 

  26. Fang RM, Feng QY, Huang HB, Ji J, He M, Zhan YJ, Liu BY, Leung DYC (2019) Effect of K+ ions on efficient room-temperature degradation of formaldehyde over MnO2 catalysts. Catal Today 327:154–160

    CAS  Google Scholar 

  27. Wu JM, Yi HH, Tang XL, Zhao SZ, Xu JL, Meng JX, Li Q (2020) Catalytic oxidation of formaldehyde by MnCo3MOx catalyst: effect of rare earth elements and temperature. Mater Chem Phys 240:122123–122130

    CAS  Google Scholar 

  28. Huang H, Dai QG, Wang XY (2014) Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl Catal B 158–159:96–105

    Google Scholar 

  29. Bai BY, Arandiyan H, Li JH (2013) Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl Catal B 142–143:677–683

    Google Scholar 

  30. Ma CY, Wang DH, Xue WJ, Dou BJ, Wang HL, Hao ZP (2011) Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. Environ Sci Technol 45:3628–3634

    CAS  PubMed  Google Scholar 

  31. Ma CY, Mu Z, He C, Li P, Li JJ, Hao ZP (2011) Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. J Environ Sci 23:2078–2086

    CAS  Google Scholar 

  32. Chagas CA, Souza EF, Manfro RL, Landi SM, Souza MMVM, Schmal M (2016) Copper as promoter of the NiO-CeO2 catalyst in the preferential CO oxidation. Appl Catal B 182:257–265

    CAS  Google Scholar 

  33. Cwele T, Mahadevaiah N, Singh S, Friedrich HB (2016) Effect of Cu additives on the performance of a cobalt substituted ceria (Ce0.90Co0.10O2-δ) catalyst in total and preferential CO oxidation. Appl Catal B 182:1–14

    CAS  Google Scholar 

  34. Shen B, Wang F, Liu T (2014) Homogeneous MnOx–CeO2 pellets prepared by a one-step hydrolysis process for low-temperature NH3-SCR. Powder Technol 253:152–157

    CAS  Google Scholar 

  35. Wang C, Sasmaz E, Wen C, Lauterbach J (2015) Pd supported on SnO2–MnOx–CeO2 catalysts for low temperature CO oxidation. Catal Today 258:481–486

    CAS  Google Scholar 

  36. Li DD, Yang GL, Li PL, Wang HL, Zhang PY (2016) Promotion of formaldehyde oxidation over Ag catalyst by Fe doped MnOx support at room temperature. Catal Today 277:257–265

    CAS  Google Scholar 

  37. Peng JX, Wang SD (2007) Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl Catal B 73:282–291

    CAS  Google Scholar 

  38. Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY, Yu JG (2017) The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl Catal B 204:147–153

    CAS  Google Scholar 

  39. Tang XF, Chen JL, Huang XM, Xu YD, Shen WJ (2008) Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Appl Catal B 81:115–121

    CAS  Google Scholar 

  40. Wen YR, Tang X, Li JH, Hao JM, Wei LS, Tang XF (2009) Impact of synthesis method on catalytic performance of MnOx-SnO2 for controlling formaldehyde emission. Catal Commun 10:1157–1160

    CAS  Google Scholar 

  41. Zhang JH, Li YB, Wang LA, Zhang CB, He H (2015) Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal Sci Technol 5:2305–2313

    CAS  Google Scholar 

  42. Bai BY, Qiao Q, Li JH, Hao JM (2016) Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation. Chin J Catal 37:27–31

    CAS  Google Scholar 

  43. Averlant R, Royer S, Giraudon JM, Bellat JP, Bezverkhyy I, Weber G, Lamonier JF (2014) Mesoporous silica-confined manganese oxide nanoparticles as highly efficient catalysts for the low-temperature elimination of formaldehyde. ChemCatChem 6:152–161

    CAS  Google Scholar 

  44. Boyioo Y, Rochard G, Giraudon JM, Liu J, Lamonier JF (2018) Mesoporous MnO2 hollow spheres for enhanced catalytic oxidation of formaldehyde. Sustain Mater Technol 17:e00091–e00100

    Google Scholar 

  45. Lu L, Tian H, He JH, Yang QW (2016) Graphene-MnO2 hybrid nanostructure as a new catalyst for formaldehyde oxidation. J Phys Chem C 120:23660–23668

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Young Talent fund of University Association for Science and Technology in Shaanxi (20180604), the postgraduate’ Innovative Entrepreneurial Training Program of Xi’an Shiyou University (YCS18211014), the college student’ Innovative Entrepreneurial Training Program of nation (201810705017) and the Natural Science Foundation of Inner Mongolia (2018MS02020). Meanwhile, the modern analysis and testing center of Xi`an Shiyou University provided strongly support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suhong Lu or Shanghong Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zheng, Y., Zhu, Q. et al. MnOx–CeO2 Derived from Mn–Ce-MOFs with Highly Efficient Removal of Formaldehyde. Catal Surv Asia 24, 207–218 (2020). https://doi.org/10.1007/s10563-020-09301-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09301-9

Keywords

Navigation