Skip to main content
Log in

TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

TPST is involved in fructose signaling to regulate the root development and expression of genes in biological processes including auxin biosynthesis and accumulation in Arabidopsis.

Abstract

Sulfonation of proteins by tyrosine protein sulfotransferases (TPST) has been implicated in many important biological processes in eukaryotic organisms. Arabidopsis possesses a single TPST gene and its role in auxin homeostasis and root development has been reported. Here we show that the Arabidopsis tpst mutants are hypersensitive to fructose. In contrast to sucrose and glucose, fructose represses primary root growth of various ecotypes of Arabidopsis at low concentrations. RNA-seq analysis identified 636 differentially expressed genes (DEGs) in Col-0 seedlings in response to fructose verses glucose. GO and KEGG analyses of the DEGs revealed that fructose down-regulates genes involved in photosynthesis, glucosinolate biosynthesis and IAA biosynthesis, but up-regulates genes involved in the degradation of branched amino acids, sucrose starvation response, and dark response. The fructose responsive DEGs in the tpst mutant largely overlapped with that in Col-0, and most DEGs in tpst displayed larger changes than in Col-0. Interestingly, the fructose up-regulated DEGs includes genes encoding two AtTPST substrate proteins, Phytosulfokine 2 (PSK2) and Root Meristem Growth Factor 7 (RGF7). Synthesized peptides of PSK-α and RGF7 could restore the fructose hypersensitivity of tpst mutant plants. Furthermore, auxin distribution and accumulation at the root tip were affected by fructose and the tpst mutation. Our findings suggest that fructose serves as a signal to regulate the expression of genes involved in various biological processes including auxin biosynthesis and accumulation, and that modulation of auxin accumulation and distribution in roots by fructose might be partly mediated by the TPST substrate genes PSK-α and RGF7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The sequencing data was deposited in NCBI Sequence Read Archive database as files of SRR9586777-9,586,780 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA550232?reviewer=uqnklg8iipoaidlp7fasbu1shl) and files of SRR7644440-7,644,443 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA484521?reviewer=kp1ejsmdcbkg4ckgidokhk9ugd).

Abbreviations

TPST:

Tyrosine protein sulfotransferases

RNA-seq:

RNA sequencing

DEGs:

Differentially expressed genes

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

PSK:

Phytosulfokine 2

RGF7:

Root meristem growth factor 7

mRGF7:

Mutated RGF7

ABA:

Abscisic acid

GIN:

Glucose insensitive

QTL:

Quantitative trait locus

FINS1:

Fructose insensitive1

CWIs:

Cell wall invertases

EMS:

Ethyle methyl sulfone

SUC2:

Sucrose transporter 2

MS:

Murashige and Skoog

IAA:

Indole-3-acetic acid

DIN:

Dark-induced proteins

COR15a:

Cold-regulated 15a (COR15a)

HOS2:

High expression of osmotically responsive genes 2

FLC:

Flowering locus C

CSP41B:

Chloroplast binding protein

ATM1:

Thioredoxin M-type 1

LHCB2:

Light-harvesting chlorophyll B-binding 2

ATPD:

ATP synthesis delta-subunit gene

PIF3:

Phytochrome interacting factor 3

CYP79F1:

Cytochrome P450 family 79 subfamily F polypeptide 1

TFs:

Transcription factors

COL9:

Constant-like 9

AIR1:

Auxin-induced in root cultures

RPKM:

Reads per kilobase of exon model per million mapped reads

cTPST-1:

Tpst-1 complementation line

cTPST-2:

Tpst-2 complementation line

WT:

Wild type

References

  • Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA 104:18333–18338

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M (2008) Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 283:21817–21826

    Article  CAS  PubMed  Google Scholar 

  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Xiong Z, Li L, Li M, Zhang L, Liu C, Xu Z (2014) Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. Ecotoxicology 23:76–91

    Article  CAS  PubMed  Google Scholar 

  • Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latche A, Pech JC, Bouzayen M (2009) Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot 60:1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YH, Yoo SD (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7:e1001263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  CAS  PubMed  Google Scholar 

  • Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Goncalves JM, Webb AA (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci USA 108:5104–5109

    Article  CAS  PubMed  Google Scholar 

  • Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Ni W, Yu R, Deng XW, Chen H, Wei N (2017) Light-dependent degradation of PIF3 by SCF(EBF1/2) promotes a photomorphogenic response in Arabidopsis. Curr Biol 27:2420–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehness R, Roitsch T (1997) Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Fernandez A, Drozdzecki A, Hoogewijs K, Nguyen A, Beeckman T, Madder A, Hilson P (2013) Transcriptional and functional classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-like signaling peptides reveals their role in lateral root and hair formation. Plant Physiol 161:954–970

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111:345–352

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Nakagawa Y, Furumoto T, Yoshida S, Biswal B, Ito M, Watanabe A, Nishida I (2005) Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulin-antagonist-sensitive signalling in Arabidopsis thaliana. Plant Cell Physiol 46:1741–1746

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008) The Relationship between auxin transport and maize branching. Plant Physiol 147:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, Hase T, Grandjean O, Clement G, Citerne S, Boutet-Mercey S, Masclaux-Daubresse C, Chardon F, Soulay F, Xu X, Trassaert M, Shakiebaei M, Najihi A, Suzuki A (2017) ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. Plant J 91:371–393

    Article  CAS  PubMed  Google Scholar 

  • Glawischnig E (2006) The role of cytochrome P450 enzymes in the biosynthesis of camalexin. Biochem Soc Trans 34:1206–1208

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieneisen VA, Xu J, Maree AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AA (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502:689–692

    Article  CAS  PubMed  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, Liu D (2014) Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol 165:1156–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Kim JI, Dolan WL, Anderson NA, Chapple C (2015) Indole glucosinolate biosynthesis limits phenylpropanoid accumulation in Arabidopsis thaliana. Plant Cell 27:1529–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  PubMed  Google Scholar 

  • Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y (2009) Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci USA 106:15067–15072

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Li Y, Zhang M, Jin F, Li J (2015) A Novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Plant Cell Physiol 56:715–726

    Article  CAS  PubMed  Google Scholar 

  • Le CS, Schmelz EA, Chourey PS (2010) Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 153:306–318

    Article  CAS  Google Scholar 

  • Lee D, Polisensky DH, Braam J (2005) Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol 165:429–444

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Wind JJ, Shi X, Zhang H, Hanson J, Smeekens SC, Teng S (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci USA 108:3436–3441

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu R, Li Y, Shen X, Zhong S, Shi H (2017a) EIN3 and PIF3 form an interdependent module that represses chloroplast development in buried seedlings. Plant Cell 29:3051–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Xu M, Liang N, Zheng Y, Yu Q, Wu S (2017b) Symplastic communication spatially directs local auxin biosynthesis to maintain root stem cell niche in Arabidopsis. Proc Natl Acad Sci USA 114:4005–4010

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci USA 93:7623–7627

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y (2006) Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol 142:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329:1065–1067

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Buchanan BB, Feldman LJ, Luan S (2012) CLE-like (CLEL) peptides control the pattern of root growth and lateral root development in Arabidopsis. Proc Natl Acad Sci USA 109:1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA (2009) Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. Planta 229:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Morris DA, Arthur ED (1984) Invertase and auxin-induced elongation in internodal segments of Phaseolus-Vulgaris. Phytochemistry 23:2163–2167

    Article  CAS  Google Scholar 

  • Nakano Y, Naito Y, Nakano T, Ohtsuki N, Suzuki K (2017) NSR1/MYR2 is a negative regulator of ASN1 expression and its possible involvement in regulation of nitrogen reutilization in Arabidopsis. Plant Sci 263:219–225

    Article  CAS  PubMed  Google Scholar 

  • Nonhebel H, Yuan Y, Al-Amier H, Pieck M, Akor E, Ahamed A, Cohen JD, Celenza JL, Normanly J (2011) Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry 72:37–48

    Article  CAS  PubMed  Google Scholar 

  • Olatunji D, Geelen D, Verstraeten I (2017) Control of endogenous auxin levels in plant root development. Int J Mol Sci 18:2587

    Article  PubMed Central  CAS  Google Scholar 

  • Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, Li J (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 26:686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelah D, Wang WX, Altman A, Shoseyov O, Bartels D (1997) Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99:153–159

    Article  CAS  Google Scholar 

  • Peng C, Uygun S, Shiu SH, Last RL (2015) The impact of the branched-chain ketoacid dehydrogenase complex on amino acid homeostasis in Arabidopsis. Plant Physiol 169:1807–1820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Wu Z, Li J, Mo X, Wu S, Chu J, Wu P (2007) AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol 64:575–587

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(Suppl):S185–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Shinohara H, Mori A, Yasue N, Sumida K, Matsubayashi Y (2016) Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis. Proc Natl Acad Sci USA 113:3897–3902

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  CAS  PubMed  Google Scholar 

  • Song W, Liu L, Wang J, Wu Z, Zhang H, Tang J, Lin G, Wang Y, Wen X, Li W, Han Z, Guo H, Chai J (2016) Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Res 26:674–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Yang DL, Kong Y, Chen Y, Li XZ, Zeng LJ, Li Q, Wang ET, He ZH (2014) Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. Mol Plant Pathol 15:161–173

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E (2012) Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Ann Bot 110:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauzin AS, Giardina T (2014) Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front Plant Sci 5:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Wu L, Yang Y, Zhou G, Ruan YL (2018) Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci 23:163–177

    Article  CAS  PubMed  Google Scholar 

  • Wu LL, Mitchell JP, Cohn NS, Kaufman PB (1993) Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots. Int J Plant Sci 154:280–289

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Kamiya T, Yumoto H, Sotta N, Katsushi Y, Shigenobu S, Matsubayashi Y, Fujiwara T (2015) An Arabidopsis thaliana copper-sensitive mutant suggests a role of phytosulfokine in ethylene production. J Exp Bot 66:3657–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Matsubayashi Y, Nakamura K, Sakagami Y (2001) Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol 127:842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Berberich T, Miyazaki A, Sano H, Kusano T (2003) Ntdin, a tobacco senescence-associated gene, is involved in molybdenum cofactor biosynthesis. Plant Cell Physiol 44:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell 26:4862–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Wu Y, Gao L, Ma J, Li CY, Xiang CB (2014) Sulfur nutrient availability regulates root elongation by affecting root indole-3-acetic acid levels and the stem cell niche. J Integr Plant Biol 56:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu CM, Li C (2010) Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell 22:3692–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zrenner R, Schuler K, Sonnewald U (1996) Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198:246–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the genomics core facility at the Shanghai Center for Plant Stress Biology for whole genome sequencing and RNA sequencing, and thank the cell biology core facility at the Shanghai Center for Plant Stress Biology for confocal microscopy. We also thank Dr. Tongda Xu for providing the pDR5:GFP transgenic plant seeds. This research was supported by the Chinese Academy of Sciences (to J.-K.Z.), and the Scientific Research Fund of Hunan Provincial Education Department 15K059 and CX2017B388.

Author information

Authors and Affiliations

Authors

Contributions

YZ, Xie J, SW and LT conducted the experiments, WW performed the data analysis, ML provided materials and helped designing experiments, YX and HS drafted and revised the manuscript, J-KZ revised the manuscript.

Corresponding author

Correspondence to Yingli Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 76 kb)

Supplementary file2 (PDF 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Xie, J., Wen, S. et al. TPST is involved in fructose regulation of primary root growth in Arabidopsis thaliana. Plant Mol Biol 103, 511–525 (2020). https://doi.org/10.1007/s11103-020-01006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01006-x

Keywords

Navigation