Skip to main content
Log in

Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily infects the mucosa of the genitourinary tract, which in women, is colonized by natural microbiota, dominated by Lactobacillus spp., that protect human cells against pathogens. In this study, we demonstrated that precolonization of human epithelial cells with Lactobacillus crispatus, one of the most prevalent bacteria in the female urogenital tract, or preincubation with the L. crispatus enolase or glutamine synthetase impairs the adhesion and invasiveness of N. gonorrhoeae toward epithelial cells, two crucial steps in gonococcal pathogenesis. Furthermore, decreased expression of genes encoding the proinflam-matory cytokines, TNFα and CCL20, which are secreted as a consequence of N. gonorrhoeae infection, was observed in N. gonorrhoeae-infected epithelial cells that had been preco-lonized with L. crispatus or preincubated with enolase and glutamine synthetase. Thus, our results indicate that the protection of human cells against N. gonorrhoeae infection is a complex process and that L. crispatus and its proteins enolase and glutamine synthetase can have a potential role in protecting epithelial cells against gonococcal infection. Therefore, these results are important since disturbances of the micro-biota or of its proteins can result in dysbiosis, which is associated with increased susceptibility of epithelium to pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antikainen, J., Kuparinen, V., Lähteenmäki, K., and Korhonen, T.K. 2007. Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol. Med. Microbiol.51, 526–534.

    Article  CAS  PubMed  Google Scholar 

  • Aroutcheva, A., Gariti, D., Simon, M., Shott, S., Faro, J., Simoes, J.A., Gurguis, A., and Faro, S. 2001. Defense factors of vaginal lacto-bacilli. Am. J. Obstet. Gynecol.185, 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Ku-bista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55, 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Chetwin, E., Manhanzva, M.T., Abrahams, A.G., Froissart, R., Gamieldien, H., Jaspan, H., Jaumdally, S.Z., Barnabas, S.L., Dabee, S., Happel, A.U., et al. 2019. Antimicrobial and inflammatory properties of South African clinical Lactobacillus isolates and vaginal probiotics. Sci. Rep.9, 1917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillard, J.P. 2011. Genetic manipulation of Neisseria gonorrhoeae. Curr. Protoc. Microbiol.Chapter 4, Unit 4A.2.

    Google Scholar 

  • Ding, J., Rapista, A., Teleshova, N., Mosoyan, G., Jarvis, G.A., Klotman, M.E., and Chang, T.L. 2010. Neisseria gonorrhoeae enhances HIV-1 infection of primary resting CD4+ T cells through TLR2 activation. J. Immunol.184, 2814–2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, J.L. and Apicella, M.A. 2004. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin. Microbiol. Rev.17, 965–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisette, P.L., Ram, S., Andersen, J.M., Guo, W., and Ingalls, R.R. 2003. The lip lipoprotein from Neisseria gonorrhoeae stimulates cyto-kine release and NF-κB activation in epithelial cells in a toll-like receptor 2-dependent manner. J. Biol. Chem.278, 46252–46260.

    Article  CAS  PubMed  Google Scholar 

  • Foschi, C., Salvo, M., Cevenini, R., Parolin, C., Vitali, B., and Marangoni, A. 2017. Vaginal lactobacilli reduce Neisseria gonorrhoeae viability through multiple strategies: an in vitro study. Front. Cell. Infect. Microbiol.7, 502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis, I.P., Islam, E.A., Gower, A.C., Shaik-Dasthagirisaheb, Y.B., Gray-Owen, S.D., and Wetzler, L.M. 2018. Murine host response to Neisseria gonorrhoeae upper genital tract infection reveals a common transcriptional signature, plus distinct inflammatory responses that vary between reproductive cycle phases. BMC Ge-nomics19, 627.

    Article  Google Scholar 

  • Graver, M.A. and Wade, J.J. 2011. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth. Ann. Clin. Microbiol. Antimicrob.10, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopper, S., Wilbur, J.S., Vasquez, B.L., Larson, J., Clary, S., Mehr, I.J., Seifert, H.S., and So, M. 2000. Isolation of Neisseria gonorrhoeae mutants that show enhanced trafficking across polarized T84 epithelial monolayers. Infect. Immun.68, 896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung, M.C. and Christodoulides, M. 2013. The biology of Neisseria adhesins. Biology2, 1054–1109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis, G.A., Li, J., and Swanson, K.V. 1999. Invasion of human mucosal epithelial cells by Neisseria gonorrhoeae upregulates expression of intercellular adhesion molecule 1 (ICAM-1). Infect. Immun.67, 1149–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery, C.J. 2015. Why study moonlighting proteins? Front. Genet.6, 211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kainulainen, V., Loimaranta, V., Pekkala, A., Edelman, S., Antikainen, J., Kylväjä, R., Laaksonen, M., Laakkonen, L., Finne, J., and Korhonen, T.K. 2012. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J. Bacteriol.194, 2509–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobierecka, P.A., Wyszyńska, A.K., Aleksandrzak‐Piekarczyk, T., Kuczkowski, M., Tuzimek, A., Piotrowska, W., Górecki, A., Adamska, I., Wieliczko, A., Bardowski, J., et al. 2017. In vitro characteristics of Lactobacillus spp. strains isolated from the chicken digestive tract and their role in the inhibition of Campylobacter colonization. Microbiologyopen6, e512.

    Article  Google Scholar 

  • Kwiatek, A., Mrozek, A., Bacal, P., Piekarowicz, A., and Adamczyk-Popławska, M. 2015. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and interactions with human cells. Front. Microbiol.6, 1426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Löfmark, S., de Klerk, N., and Aro, H. 2011. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release. PLoS One6, e16369.

    Article  Google Scholar 

  • Płaczkiewicz, J., Adamczyk-Popławska, M., Lasek, R., Bącal, P., and Kwiatek, A. 2019. Inactivation of genes encoding MutL and MutS proteins influences adhesion and biofilm formation by Neisseria gonorrhoeae. Microorganisms7, 647.

    Article  PubMed Central  Google Scholar 

  • Sambrook, J. and Russell, D.W. 2001. Molecular cloning: A laboratory manual. 3rd ed., Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Sánchez, B., Schmitter, J.M., and Urdaci, M.C. 2009. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J. Mol. Microbiol. Biotechnol.17, 158- 162.

    Article  PubMed  Google Scholar 

  • Spurbeck, R.R. and Arvidson, C.G. 2008. Inhibition of Neisseria gonorrhoeae epithelial cell interactions by vaginal Lactobacillus species. Infect. Immun.76, 3124–3130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurbeck, R.R. and Arvidson, C.G. 2010. Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect. Immun.78, 3103–3111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurbeck, R.R., Harris, P.T., Raghunathan, K., Arvidson, D.N., and Arvidson, C.G. 2015. A moonlighting enolase from Lactobacillus gasseri does not require enzymatic activity to inhibit Neisseria gonorrhoeae adherence to epithelial cells. Probiotics Antimicrob. Proteins7, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • St Amant, D.C., Valentin-Bon, I.E., and Jerse, A.E. 2002. Inhibition of Neisseria gonorrhoeae by Lactobacillus species that are commonly isolated from the female genital tract. Infect. Immun.70, 7169–7171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishi-levich, S., Stein, T.I., Nudel, R., Lieder, I., Mazor, Y., et al. 2016. The genecards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics54, 1.30.1–1.30.33.

    Article  Google Scholar 

  • Thakur, S.D., Obradovic, M., Dillon, J.A.R., Ng, S.H., and Wilson, H.L. 2019. Development of flow cytometry based adherence assay for Neisseria gonorrhoeae using 5-carboxyfluorosceinsuccidyl ester. BMC Microbiol.19, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Unemo, M., Fasth, O., Fredlund, H., Limnios, A., and Tapsall, J. 2009. Phenotypic and genetic characterization of the 2008 WHO Neis-seria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J. Antimicrob. Chemother.63, 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  • van Putten, J.P., Duensing, T.D., and Cole, R.L. 1998. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol. Microbiol.29, 369–379.

    Article  PubMed  Google Scholar 

  • Vielfort, K., Sjölinder, H., Roos, S., Jonsson, H., and Aro, H. 2008. Adherence of clinically isolated lactobacilli to human cervical cells in competition with Neisseria gonorrhoeae. Microbes Infect.10, 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  • Vielfort, K., Söderholm, N., Weyler, L., Vare, D., Löfmark, S., and Aro, H. 2013. Neisseria gonorrhoeae infection causes DNA damage and affects the expression of p21, p27 and p53 in non-tumor epithelial cells. J. Cell Sci.126, 339–347.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO

    Google Scholar 

  • Zen, K. and Parkos, C.A. 2003. Leukocyte-epithelial interactions. Curr. Opin. Cell Biol.15, 557–564.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre (grant no. UMO-2014/15/B/NZ6/02514) and the Ministry of Science and Higher Education through the Faculty of Biology, University of Warsaw intramural grant DSM #86-011500-36. Scanning electron microscopy and the equipment used for the LC-MS analysis was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project cosponsored by the European Regional Development Fund and Innovative Economy and The National Cohesion Strategy of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Kwiatek.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Płaczkiewicz, J., Chmiel, P., Malinowska, E. et al. Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells. J Microbiol. 58, 405–414 (2020). https://doi.org/10.1007/s12275-020-9505-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9505-9

Keywords

Navigation