Skip to main content
Log in

Unconventional high temperature superconductivity in cubic zinc-blende transition metal compounds

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We consider possible high temperature superconductivity (high-Tc) in transition metal compounds with a cubic zinc-blende lattice structure. When the electron filling configuration in the d-shell is close to d7, all three t2g orbitals are near half filling with strong nearest neighbor antiferromagnetic (AFM) superexchange interactions. We argue that upon doping, this electronic environment can be one of “genes” to host unconventional high Tc with a time reversal symmetry broken d2z2x2y2 ± id x2y2 pairing symmetry. With gapless nodal points along the diagonal directions, this state is a direct three-dimensional analogue to the two-dimensional B1gd-wave state in cuprates. We suggest that such a case may be realized in electron doped CoN, such as CoN1−xOx and (H, Li)1−xCoN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. G. Bednorz, and K. A. Müller. Z. Phys. B-Condensed Matter 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  3. J. Zaanen, S. Chakravarty, T. Senthil, P. Anderson, R Lee, J. Schmalian, M. Imada, D. Pines, M. Randeria, C. Varma, M. Vojta, and M. Rice, Nat. Phys. 2, 138 (2006)

    Article  Google Scholar 

  4. M. R. Norman, Science 332, 196 (2011)

    Article  ADS  Google Scholar 

  5. A. J. Leggett, Nat. Phys. 2, 134 (2006).

    Article  Google Scholar 

  6. J. Hu, C. Le, and X. Wu, Phys. Rev. X 5, 041012 (2015)

    Google Scholar 

  7. J. Hu, Sci. Bull. 61, 561 (2016)

    Article  Google Scholar 

  8. J. Hu, and J. Yuan, Front. Phys. 11, 117404 (2016).

    Article  ADS  Google Scholar 

  9. J. Hu, and N. Hao, Phys. Rev. X 2, 021009 (2012).

    Google Scholar 

  10. J. Hu, and C. Le, Sci. Bull. 62, 212 (2017)

    Article  Google Scholar 

  11. G. E. Delgado, P Grima-Gallardo, L. Nieves, H. Cabrera, J. R. Glenn, and J. A. Aitken, Mat. Res. 19, 1423 (2016)

    Article  Google Scholar 

  12. J. Hu, Y. Gu. and C. Le, Sci. Bull. 63, 1338 (2018).

    Article  Google Scholar 

  13. C. Le, J. Zeng, Y. Gu, G. H. Cao, and J. Hu, Sci. Bull. 63, 957 (2018).

    Article  Google Scholar 

  14. G. Kotliar, and J. Liu, Phys. Rev. B 38, 5142 (1988)

    Article  ADS  Google Scholar 

  15. J. Brinckmann, and P. A. Lee, Phys. Rev. B 65, 014502 (2001).

    Article  ADS  Google Scholar 

  16. K. Seo, B. A. Bernevig, and J. Hu, Phys. Rev. Lett. 101, 206404 (2008)

    Article  ADS  Google Scholar 

  17. R. Yu, and Q. Si, Phys. Rev. B 86, 085104 (2012).

    Article  ADS  Google Scholar 

  18. J. S. Smart, Phys. Rev. 86, 968 (1952)

    Article  ADS  Google Scholar 

  19. W. L. Roth, Phys. Rev. 110, 1333 (1958)

    Article  ADS  Google Scholar 

  20. M. E. Lines, Phys. Rev. 139, A1304 (1965)

    Article  ADS  Google Scholar 

  21. N. N. Sun, and H. Y. Wang, J. Magn. Magn. Mater. 454, 176 (2018).

    Article  Google Scholar 

  22. M. Sigrist, and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).

    Article  ADS  Google Scholar 

  23. A. Riiegg, M. Indergand, S. Pilgram, and M. Sigrist, Eur. Phys. J. B 48, 55 (2005)

    Article  ADS  Google Scholar 

  24. Q. H. Wang, D. H. Lee, and P. A. Lee, Phys. Rev. B 69, 092504 (2004).

    Article  ADS  Google Scholar 

  25. Y Gu. Q. Zhang, C. Le, Y Li, T. Xiang, and J. Hu, Phys. Rev. B 100, 165405 (2019).

    Article  ADS  Google Scholar 

  26. J. Hu, and H. Ding, Sci. Rep. 2, 381 (2012).

    Article  ADS  Google Scholar 

  27. K. Suzuki, T. Kaneko, H. Yoshida, H. Morita, and H. Fujimori, J. Alloys Compd. 224, 232 (1995).

    Article  Google Scholar 

  28. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  29. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  30. K. Jiang, X. Wu, J. Hu, and Z. Wang, Phys. Rev. Lett. 121, 227002 (2018); Z.

    Article  ADS  Google Scholar 

  31. P. Yin, K. Haule, and G. Kotliar, Nat. Phys. 10, 845 (2014).

    Article  Google Scholar 

  32. A. Ramires, D. F. Agterberg, and M. Sigrist, Phys. Rev. B 98, 024501 (2018).

    Article  ADS  Google Scholar 

  33. D. F. Agterberg, V. Barzykin, and L. P. Gorkov, Phys. Rev. B 60, 14868 (1999)

    Article  ADS  Google Scholar 

  34. S. V. Streltsov, I. I. Mazin, R. Heid, and K. P. Bohnen, Phys. Rev. B 94, 241101 (2016).

    Article  ADS  Google Scholar 

  35. M. J. Redman, and E. G. Steward, Nature 193, 867 (1962)

    Article  ADS  Google Scholar 

  36. H. X. Deng, J. Li, S. S. Li, J. B. Xia, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 96, 162508 (2010).

    Article  ADS  Google Scholar 

  37. M. W Lumey, and R. Dronskowski, Adv. Funct. Mater. 14, 371 (2004)

    Article  Google Scholar 

  38. J. Takahashi, Y. Hirose, D. Oka, S. Nakao, C. Yang, T. Fuku-mura, I. Harayama, D. Sekiba, and T. Hasegawa, Appl. Phys. Lett. 107, 231906 (2015).

    Article  ADS  Google Scholar 

  39. M. V. Reddy, G. Prithvi, K. P. Loh, and B. V. R. Chowdari, ACS Appl. Mater. Interfaces 6, 680 (2014)

    Article  Google Scholar 

  40. H. Wang, X. Song, Y Xu, and Z. Yang, Mod. Phys. Lett. B 32, 1850184 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangPing Hu.

Additional information

Qiang Zhang was supported by the International Young Scientist Fellowship of Institute of Physics, Chinese Academy Sciences (Grant No. 2017002), and the Postdoctoral International Program from China Postdoctoral Science Foundation (Grant No. Y8BK131T61). YuHao Gu was supported by the High-performance Computing Platform of Peking University. Jiang- Ping Hu was supported by the National Basic Research Program of China (Grant Nos. 2015CB921300, and 2017YFA0303100), the National Natural Science Foundation of China (Grant No. NSFC-11334012), and the Strategic Priority Research Program of Chinese Academy Sciences (Grant No. XDB07000000).

Electronic supplementary material

11433_2019_1495_MOESM1_ESM.pdf

Supplementary Materials: Unconventional High Temperature Superconductivity in Cubic Zinc-blende Transition Metal Compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Jiang, K., Gu, Y. et al. Unconventional high temperature superconductivity in cubic zinc-blende transition metal compounds. Sci. China Phys. Mech. Astron. 63, 277411 (2020). https://doi.org/10.1007/s11433-019-1495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1495-3

Keywords

Navigation