Skip to main content
Log in

Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses. Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical geometries that exist in many industrial applications. Furthermore, this study investigates the effects of changing the superelement size and its number of nodes on solution accuracy. The governing equations of composite spherical shells are derived based on the first-order shear deformation theory and considering large deformations. For solving the nonlinear governing equations, the tangent stiffness matrix has been extracted and the Newton–Raphson method is employed. The capability of the presented shell superelement is investigated in several problems under linear/nonlinear static and free vibration analysis. The results acquired by the presented shell superelements are compared with available results in the literature and conventional shell elements in a commercial software. Results comparisons reveal high accuracy at a reduced computational cost in the superelement model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Habibi M et al (2017) Determination of forming limit diagram using two modified finite element models. Amirkabir J Mech Eng 48:379–388. https://doi.org/10.22060/mej.2016.664

    Article  Google Scholar 

  2. Kung E, Farahmand M, Gupta A (2019) A hybrid experimental–computational modeling framework for cardiovascular device testing. J Biomech Eng. https://doi.org/10.1115/1.4042665

    Article  Google Scholar 

  3. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  4. Nguyen LB, Thai CH, Nguyen-Xuan H (2016) A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates. Eng Comput 32:457–475. https://doi.org/10.1007/s00366-015-0426-x

    Article  Google Scholar 

  5. Shamloofard M, Assempour A (2019) Development of an inverse isogeometric methodology and its application in sheet metal forming process. Appl Math Model 73:266–284. https://doi.org/10.1016/j.apm.2019.03.042

    Article  MATH  Google Scholar 

  6. Koko TS, Olson MD (1991) Non-linear analysis of stiffened plates using super elements. Int J Numer Methods Eng 31:319–343. https://doi.org/10.1002/nme.1620310208

    Article  MATH  Google Scholar 

  7. Koko TS, Olson MD (1991) Nonlinear transient response of stiffened plates to air blast loading by a superelement approach. Comput Methods Appl Mech Eng 90:737–760. https://doi.org/10.1016/0045-7825(91)90182-6

    Article  Google Scholar 

  8. Koko TS, Olson MD (1992) Vibration analysis of stiffened plates by super elements. J Sound Vib 158:149–167. https://doi.org/10.1016/0022-460X(92)90670-S

    Article  MATH  Google Scholar 

  9. Jiang J, Olson MD (1994) Nonlinear analysis of orthogonally stiffened cylindrical shells by a super element approach. Finite Elem Anal Des 18:99–110. https://doi.org/10.1016/0168-874X(94)90094-9

    Article  MATH  Google Scholar 

  10. Ahmadian MT, Zangeneh M (2003) Application of super elements to free vibration analysis of laminated stiffened plates. J Sound Vib 259:1243–1252. https://doi.org/10.1006/jsvi.2002.5288

    Article  Google Scholar 

  11. Ahmadian MT, Bonakdar M (2008) A new cylindrical element formulation and its application to structural analysis of laminated hollow cylinders. Finite Elem Anal Des 44:617–630. https://doi.org/10.1016/j.finel.2008.02.003

    Article  Google Scholar 

  12. Ahmadian MT, Movahhedy MR, Rezaei MM (2011) Design and application of a new tapered superelement for analysis of revolving geometries. Finite Elem Anal Des 47:1242–1252. https://doi.org/10.1016/j.finel.2011.06.002

    Article  MathSciNet  Google Scholar 

  13. Torabi J, Ansari R (2018) A higher-order isoparametric superelement for free vibration analysis of functionally graded shells of revolution. Thin Walled Struct 133:169–179. https://doi.org/10.1016/j.tws.2018.09.040

    Article  Google Scholar 

  14. Sarvi MN, Ahmadian MT (2012) Design and implementation of a new spherical super element in structural analysis. Appl Math Comput 218:7546–7561. https://doi.org/10.1016/j.amc.2012.01.022

    Article  MathSciNet  MATH  Google Scholar 

  15. Shamloofard M, Movahhedy MR (2015) Development of thermo-elastic tapered and spherical superelements. Appl Math Comput 265:380–399. https://doi.org/10.1016/j.amc.2015.04.106

    Article  MathSciNet  MATH  Google Scholar 

  16. Dhari RS, Patel NP, Wang H, Hazell PJ (2019) Progressive damage modeling and optimization of fibrous composites under ballistic impact loading. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1655688

    Article  Google Scholar 

  17. Habibi M et al (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  18. Gautham BP, Ganesan N (1997) Free vibration characteristics of isotropic and laminated orthotropic spherical caps. J Sound Vib 204:17–40. https://doi.org/10.1006/jsvi.1997.0904

    Article  Google Scholar 

  19. Ram KSS, Babu TS (2002) Free vibration of composite spherical shell cap with and without a cutout. Comput Struct 80:1749–1756. https://doi.org/10.1016/S0045-7949(02)00210-9

    Article  Google Scholar 

  20. Pang F, Li H, Cuib J, Du Y, Gao C (2019) Application of flügge thin shell theory to the solution of free vibration behaviors for spherical–cylindrical–spherical shell: a unified formulation. Eur J Mech A Solids 74:381–393. https://doi.org/10.1016/j.euromechsol.2018.12.003

    Article  MathSciNet  MATH  Google Scholar 

  21. Hosseini-Hashemi Sh, Atashipour SR, Fadaee M, Girjammer UA (2012) An exact closed-form procedure for free vibration analysis of laminated spherical shell panels based on Sanders theory. Arch Appl Mech 82:985–1002. https://doi.org/10.1007/s00419-011-0606-0

    Article  MATH  Google Scholar 

  22. Qu Y, Long X, Wu S, Meng G (2013) A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos Struct 98:169–191. https://doi.org/10.1016/j.compstruct.2012.11.001

    Article  Google Scholar 

  23. Singh VK, Panda SK (2014) Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin Walled Struct 85:341–349. https://doi.org/10.1016/j.tws.2014.09.003

    Article  Google Scholar 

  24. Li H, Pang F, Miao X, Gao S, Liu F (2019) A semi analytical method for free vibration analysis of composite laminated cylindrical and spherical shells with complex boundary conditions. Thin Walled Struct 136:200–220. https://doi.org/10.1016/j.tws.2018.12.009

    Article  Google Scholar 

  25. Sahoo SS, Panda SK, Mahapatra TR (2016) Static, free vibration and transient response of laminated composite curved shallow panel—an experimental approach. Eur J Mech A Solids 59:95–113. https://doi.org/10.1016/j.euromechsol.2016.03.014

    Article  MathSciNet  Google Scholar 

  26. Mahapatra TR, Panda SK (2016) Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: a micromechanical approach. Aerosp Sci Technol 49:276–288. https://doi.org/10.1016/j.ast.2015.12.018

    Article  Google Scholar 

  27. Tornabene F, Fantuzzi N, Bacciocchi M, Neves AMA, Ferreira AJM (2016) MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells. Compos B Eng 99:30–47. https://doi.org/10.1016/j.compositesb.2016.05.049

    Article  Google Scholar 

  28. Li H, Pang F, Wang X, Du Y, Chen H (2018) Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi analytical method. Compos Struct 201:86–111. https://doi.org/10.1016/j.compstruct.2018.05.143

    Article  Google Scholar 

  29. Pang F, Li H, Wang X, Miao X, Li S (2018) A semi analytical method for the free vibration of doubly-curved shells of revolution. Comput Math Appl 75–9:3249–3268. https://doi.org/10.1016/j.tws.2018.03.026

    Article  MathSciNet  MATH  Google Scholar 

  30. Alwar RS, Narasimhan MC (1990) Application of Chebyshev polynomials to the analysis of laminated axisymmetric spherical shells. Compos Struct 15:215–237

    Article  Google Scholar 

  31. Lal A, Singh BN, Anand S (2011) Nonlinear bending response of laminated composite spherical shell panel with system randomness subjected to hygro-thermo-mechanical loading. Int J Mech Sci 53:855–866. https://doi.org/10.1016/j.ijmecsci.2011.07.008

    Article  Google Scholar 

  32. Ferreira AJM, Carrera E, Cinefra M, Roque CMC (2011) Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Comput Mech 48:13–25. https://doi.org/10.1007/s00466-011-0579-4

    Article  MATH  Google Scholar 

  33. Mahapatra TR, Panda SK, Kar VR (2016) Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel. Int J Mech Mater Des 12:153–171. https://doi.org/10.1007/s10999-015-9299-9

    Article  Google Scholar 

  34. Tornabene F, Brischetto S (2018) 3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells. Thin Walled Struct 129:94–124. https://doi.org/10.1016/j.tws.2018.03.021

    Article  Google Scholar 

  35. Katariya PV, Hirwani CK, Panda SK (2019) Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory. Eng Comput 35:467–485. https://doi.org/10.1007/s00366-018-0609-3

    Article  Google Scholar 

  36. Katariya PV, Panda SK (2019) Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Eng Comput 35:1009–1026. https://doi.org/10.1007/s00366-018-0646-y

    Article  Google Scholar 

  37. Hirwani CK, Panda SK (2019) Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load. Eng Comput 1:1–14. https://doi.org/10.1007/s00366-019-00757-6

    Article  Google Scholar 

  38. Sayyad S, Ghugal YM (2019) Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory. Compos Struct 129:129–146. https://doi.org/10.1016/j.compstruct.2019.03.054

    Article  Google Scholar 

  39. Evkin Y (2019) Composite spherical shells at large deflections. Asymptotic analysis and applications. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111577

    Article  Google Scholar 

  40. Reddy JN (2003) Mechanics of laminated composites plates and shells. CRC Press, New York

    Book  Google Scholar 

  41. Sanders JL (1959) An improved first-approximation theory for thin shells. NASA TR-24

  42. Shin DK (1997) Large amplitude free vibration behavior of doubly curved shallow open shells with simply-supported edges. Comput Struct 62–1:35–49. https://doi.org/10.1016/S0045-7949(96)00215-5

    Article  MATH  Google Scholar 

  43. Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  44. Hoppmann WH, Baronet CN (1963) A study of the vibrations of shallow spherical shells. J Appl Mech 30:329–334. https://doi.org/10.1115/1.3636557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Movahhedy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

\(\left[ {B_{m} } \right],\left[ {B_{b} } \right],\left[ {B_{s} } \right]\) and \(\left[ {B_{NL} } \right]\) are given as the following equations:

$$\begin{aligned} & \left[ {B_{m} } \right] \\ & \quad = \left[ {\begin{array}{*{20}l} {\frac{1}{R}\frac{{\partial N_{1} }}{{\partial \varphi }}} \hfill & 0 \hfill & {\frac{1}{R}N_{1} } \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & {\frac{1}{R}\frac{{\partial N_{i} }}{{\partial \varphi }}} \hfill & 0 \hfill & {\frac{1}{R}N_{1} } \hfill & 0 \hfill & 0 \hfill \\ {\frac{{\cot \left( \varphi \right)}}{R}N_{1} } \hfill & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{1} }}{{\partial \theta }}} \hfill & {\frac{1}{R}N_{1} } \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & {\frac{{\cot \left( \varphi \right)}}{R}N_{i} } \hfill & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{i} }}{{\partial \theta }}} \hfill & {\frac{1}{R}N_{1} } \hfill & 0 \hfill & 0 \hfill \\ {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{1} }}{{\partial \theta }}} \hfill & {\frac{1}{R}\frac{{\partial N_{1} }}{{\partial \varphi }} - \frac{{\cot \left( \varphi \right)}}{R}N_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{i} }}{{\partial \theta }}} \hfill & {\frac{1}{R}\frac{{\partial N_{i} }}{{\partial \varphi }} - \frac{{\cot \left( \varphi \right)}}{R}N_{i} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right] \\ & \left[ {B_{b} } \right] \\ & \quad = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & {\frac{1}{R}\frac{{\partial N_{1} }}{{\partial \varphi }}} & 0 \\ 0 & 0 & 0 & {\frac{{\cot \left( \varphi \right)}}{R}N_{1} } & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{1} }}{{\partial \theta }}} \\ 0 & 0 & 0 & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{1} }}{{\partial \theta }}} & {\frac{1}{R}\frac{{\partial N_{1} }}{{\partial \varphi }} - \frac{{\cot \left( \varphi \right)}}{R}N_{1} } \\ \end{array} \begin{array}{*{20}c} \ldots & 0 & 0 & 0 & {\frac{1}{R}\frac{{\partial N_{i} }}{{\partial \varphi }}} & 0 \\ \ldots & 0 & 0 & 0 & {\frac{{\cot \left( \varphi \right)}}{R}N_{i} } & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{i} }}{{\partial \theta }}} \\ \ldots & 0 & 0 & 0 & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{i} }}{{\partial \theta }}} & {\frac{1}{R}\frac{{\partial N_{i} }}{{\partial \varphi }} - \frac{{\cot \left( \varphi \right)}}{R}N_{i} } \\ \end{array} } \right] \\ & \left[ {B_{s} } \right] \\ & \quad = \left[ {\begin{array}{*{20}c} { - \frac{1}{R}N_{1} } & 0 & {\frac{1}{R}\frac{{\partial N_{1} }}{{\partial \varphi }}} & 1 & 0 \\ 0 & { - \frac{1}{R}N_{1} } & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{1} }}{{\partial \theta }}} & 0 & 1 \\ \end{array} \begin{array}{*{20}c} {~~~ \ldots } & { - \frac{1}{R}N_{i} } & 0 & {\frac{1}{R}\frac{{\partial N_{i} }}{{\partial \varphi }}} & 1 & 0 \\ {~~~ \ldots } & 0 & { - \frac{1}{R}N_{i} } & {\frac{1}{{R\sin \left( \varphi \right)}}\frac{{\partial N_{i} }}{{\partial \theta }}} & 0 & 1 \\ \end{array} } \right] \\ & \left[ {B_{{NL}} } \right] = \left[ {\begin{array}{*{20}c} {B_{{NL}}^{{\left( 1 \right)}} } \\ {B_{{NL}}^{{\left( 2 \right)}} } \\ {B_{{NL}}^{{\left( 3 \right)}} } \\ \end{array} } \right] = \left\{ {\begin{array}{*{20}c} {\frac{1}{2}\left\{ U \right\}^{T} ~\left\{ {\tilde{d}_{1} } \right\}^{T} \left\{ {\tilde{d}_{1} } \right\}} \\ {\frac{1}{2}\left\{ U \right\}^{T} ~\left\{ {\tilde{d}_{2} } \right\}^{T} \left\{ {\tilde{d}_{2} } \right\}} \\ {~~~\frac{1}{2}\left\{ U \right\}^{T} ~\left\{ {\tilde{d}_{1} } \right\}^{T} \left\{ {\tilde{d}_{2} } \right\}~} \\ \end{array} } \right\} \\ & [B_{{NL}} ] = \left[ {\begin{array}{*{20}c} {\frac{1}{{2R^{2} }}\left\{ {0\quad 0\quad \frac{{\partial N_{1} }}{{\partial \varphi }}\mathop \sum \limits_{{i = 1}}^{{npe}} \frac{{\partial N_{i} }}{{\partial \varphi }}w_{i} \quad 0\quad 0\quad \ldots \quad \ldots \quad 0\quad 0\quad \frac{{\partial N_{{npe}} }}{{\partial \varphi }}\mathop \sum \limits_{{i = 1}}^{{npe}} \frac{{\partial N_{i} }}{{\partial \varphi }}w_{i} \quad 0\quad 0} \right\}} \\ {\frac{1}{{2R^{2} \sin ^{2} \left( \varphi \right)}}\left\{ {0\quad 0\quad \frac{{\partial N_{1} }}{{\partial \theta }}\mathop \sum \limits_{{i = 1}}^{{npe}} \frac{{\partial N_{i} }}{{\partial \theta }}w_{i} \quad 0\quad 0\quad \ldots \quad \ldots \quad 0\quad 0\quad \frac{{\partial N_{{npe}} }}{{\partial \theta }}\mathop \sum \limits_{{i = 1}}^{{npe}} \frac{{\partial N_{i} }}{{\partial \theta }}w_{i} \quad 0\quad 0} \right\}} \\ {\frac{1}{{R^{2} \sin \left( \varphi \right)}}\left\{ {0\quad 0\quad \frac{{\partial N_{1} }}{{\partial \theta }}\mathop \sum \limits_{{i = 1}}^{{npe}} \frac{{\partial N_{i} }}{{\partial \varphi }}w_{i} \quad 0\quad 0\quad \ldots \quad \ldots \quad 0\quad 0\quad \frac{{\partial N_{{npe}} }}{{\partial \theta }}\mathop \sum \limits_{{i = 1}}^{{npe}} \frac{{\partial N_{i} }}{{\partial \varphi }}w_{i} \quad 0\quad 0} \right\}.} \\ \end{array} } \right] \\ \end{aligned}$$
(23)

Appendix 2

\(K_{1} ,K_{2} ,K_{3} , \ldots ,K_{10}\) are specified as the following equations:

$$\begin{aligned} K_{1} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{m} } \right]^{T} \left[ A \right]\left[ {B_{m} } \right]{\text{d}}A \\ K_{2} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{m} } \right]^{T} \left[ A \right]\left[ {B_{NL} } \right]{\text{d}}A \\ K_{3} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{m} } \right]^{T} \left[ B \right]\left[ {B_{b} } \right]{\text{d}}A \\ K_{4} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {\tilde{B}_{NL} } \right]^{T} \left[ A \right]\left[ {B_{m} } \right]{\text{d}}A \\ K_{5} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {\tilde{B}_{NL} } \right]^{T} \left[ A \right]\left[ {B_{NL} } \right]{\text{d}}A \\ K_{6} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {\tilde{B}_{NL} } \right]^{T} \left[ B \right]\left[ {B_{b} } \right]{\text{d}}A \\ K_{7} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{b} } \right]^{T} \left[ B \right]\left[ {B_{m} } \right] dA \\ K_{8} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{b} } \right]^{T} \left[ B \right]\left[ {B_{NL} } \right] dA \\ K_{9} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{b} } \right]^{T} \left[ D \right]\left[ {B_{b} } \right]{\text{d}}A \\ K_{10} & = \mathop {\iint }\limits_{{A^{e} }}^{{}} \left[ {B_{s} } \right]^{T} \left[ {A_{s} } \right]\left[ {B_{s} } \right]{\text{d}}A. \\ \end{aligned}$$
(24)

In the above equation, \(\left[ {\tilde{B}_{NL} } \right]\) is written as:

$$\begin{aligned} & \left[ {\tilde{B}_{NL} } \right] = \left[ {\begin{array}{*{20}c} {\tilde{B}_{NL}^{\left( 1 \right)} } \\ {\tilde{B}_{NL}^{\left( 2 \right)} } \\ {\tilde{B}_{NL}^{\left( 3 \right)} } \\ \end{array} } \right] \\ & \tilde{B}_{NL}^{\left( 1 \right)} = \frac{1}{{R^{2} }}\left\{ {0\quad 0\quad \frac{{\partial N_{1} }}{\partial \varphi }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \varphi }w_{i} \quad 0\quad 0\quad \cdots \quad \cdots 0\quad 0\quad \frac{{\partial N_{npe} }}{\partial \varphi }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \varphi }w_{i} \quad 0\quad 0} \right\} \\ & \tilde{B}_{NL}^{\left( 2 \right)} = \frac{1}{{R^{2} \sin^{2} \left( \varphi \right)}}\left\{ {0\quad 0\quad \frac{{\partial N_{1} }}{\partial \theta }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \theta }w_{i} \quad 0\quad 0\quad \ldots \quad \ldots \quad 0\quad 0\quad \frac{{\partial N_{npe} }}{\partial \theta }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \theta }w_{i} \quad 0\quad 0} \right\} \\ & \tilde{B}_{NL}^{\left( 3 \right)} = \frac{1}{{R^{2} \sin \left( \varphi \right)}}\left\{ {0\quad 0\quad \left( {\frac{{\partial N_{1} }}{\partial \theta }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \varphi }w_{i} } \right) + \left( {\frac{{\partial N_{1} }}{\partial \varphi }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \theta }w_{i} } \right)\quad 0\quad 0\quad \ldots \quad \ldots \quad 0\quad 0\quad \left( {\frac{{\partial N_{npe} }}{\partial \theta }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \varphi }w_{i} } \right) + \left( {\frac{{\partial N_{npe} }}{\partial \varphi }\mathop \sum \limits_{i = 1}^{npe} \frac{{\partial N_{i} }}{\partial \theta }w_{i} } \right)\quad 0\quad 0} \right\}. \\ \end{aligned}$$
(25)

Appendix 3

This research uses the Newton–Raphson algorithm for solving the nonlinear governing equation as follows:

$$\begin{aligned} & \left[ {K^{t} \left( {\left\{ U \right\}^{r} } \right)} \right]\left\{ {\Delta U} \right\} = \left\{ F \right\} - \left[ {K \left( {\left\{ U \right\}^{r} } \right)} \right] \left\{ U \right\}^{r} \\ & \left\{ U \right\}^{r + 1} \,= \left\{ U \right\}^{r} + \left\{ {\Delta U} \right\} \\ \end{aligned}$$
(26)

where \(K^{t}\) is the tangent stiffness matrix which is expressed as follows:

$$(K_{ij}^{t} )^{r} = K_{ik,j}^{r} U_{k}^{r} + K_{ij}^{r}$$
(27)

where

$$\begin{aligned} & K_{{ik,j}}^{r} = \left( {K_{2} } \right)_{{ik,j}}^{r} + \left( {K_{4} } \right)_{{ik,j}}^{r} + \left( {K_{5} } \right)_{{ik,j}}^{r} + \left( {K_{6} } \right)_{{ik,j}}^{r} + \left( {K_{8} } \right)_{{ik,j}}^{r} \\ & \left( {K_{2} } \right)_{{ik,j}}^{r} = \left( {B_{m} } \right)_{{pi}} ~\left( A \right)_{{pq}} ~\left( {B_{{NL}} } \right)_{{qk,j}} \\ & \left( {K_{4} } \right)_{{ik,j}}^{r} = \left( {\tilde{B}_{{NL}} } \right)_{{pi,j}} ~\left( A \right)_{{pq}} ~\left( {B_{m} } \right)_{{qk,j}} \\ & \left( {K_{5} } \right)_{{ik,j}}^{r} = \left( {\tilde{B}_{{NL}} } \right)_{{pi,j}} ~~~\left( A \right)_{{pq}} ~~~\left( {B_{{NL}} } \right)_{{qk}}^{r} + \left( {\tilde{B}_{{NL}} } \right)_{{pi}}^{r} ~~~\left( A \right)_{{pq}} ~~~\left( {B_{{NL}} } \right)_{{qk,j}} \\ & \left( {K_{6} } \right)_{{ik,j}} = \left( {\tilde{B}_{{NL}} } \right)_{{pi,j}} ~~~\left( B \right)_{{pq}} ~~~\left( {B_{b} } \right)_{{qk}} \\ & \left( {K_{8} } \right)_{{ik,j}} = \left( {B_{b} } \right)_{{pi}} ~~~\left( B \right)_{{pq}} ~~~\left( {B_{{NL}} } \right)_{{q,jk}} \\ & \quad i,j,k = 1:dof \times npe;\quad p,q = 1,2,3. \\ \end{aligned}$$
(28)

Nonzero terms of \(\left( {B_{NL} } \right)_{pi,j}\) and \(\left( {\tilde{B}_{NL} } \right)_{pi,j}\) matrices are defined as the following equations:

$$\left( {B_{NL} } \right)_{pi,j} = \left\{ {\begin{array}{*{20}c} {\left[ {B_{NL} } \right]_{1i,j} } \\ {\left[ {B_{NL} } \right]_{2i,j} } \\ {\left[ {B_{NL} } \right]_{3i,j} } \\ \end{array} } \right\},\left( {\tilde{B}_{NL} } \right)_{pi,j} = \left\{ {\begin{array}{*{20}c} {\left[ {\tilde{B}_{NL} } \right]_{1i,j} } \\ {\left[ {\tilde{B}_{NL} } \right]_{2i,j} } \\ {\left[ {\tilde{B}_{NL} } \right]_{3i,j} } \\ \end{array} } \right\}$$
(29)

where

$$\begin{aligned} & \left[ {B_{NL} } \right]_{1i,j} = \left[ {\begin{array}{*{20}c} {B_{1NLj}^{11} } & {B_{1NLj}^{12} } & \cdots & {B_{1NLj}^{1l} } \\ {B_{1NLj}^{21} } & {B_{1NLj}^{22} } & \cdots & {B_{1NLj}^{1l} } \\ \vdots & \vdots & \ddots & \vdots \\ {B_{1NLj}^{k1} } & {B_{1NLj}^{k2} } & \cdots & {B_{1NLj}^{kl} } \\ \end{array} } \right],\quad \left[ {\tilde{B}_{NL} } \right]_{1i,j}= \left[ {\begin{array}{*{20}c} {\tilde{B}_{1NLj}^{11} } & {\tilde{B}_{1NLj}^{12} } & \cdots & {\tilde{B}_{1NLj}^{1l} } \\ {\tilde{B}_{1NLj}^{21} } & {\tilde{B}_{1NLj}^{22} } & \cdots & {\tilde{B}_{1NLj}^{1l} } \\ \vdots & \vdots & \ddots & \vdots \\ {\tilde{B}_{1NLj}^{k1} } & {\tilde{B}_{1NLj}^{k2} } & \cdots & {\tilde{B}_{1NLj}^{kl} } \\ \end{array} } \right] \\ & \left[ {B_{NL} } \right]_{2i,j} = \left[ {\begin{array}{*{20}c} {B_{2NLj}^{11} } & {B_{2NLj}^{12} } & \ldots & {B_{2NLj}^{1l} } \\ {B_{2NLj}^{21} } & {B_{2NLj}^{22} } & \ldots & {B_{2NLj}^{1l} } \\ \vdots & \vdots & \ddots & \vdots \\ {B_{2NLj}^{k1} } & {B_{2NLj}^{k2} } & \ldots & {B_{2NLj}^{kl} } \\ \end{array} } \right],\quad \left[ {\tilde{B}_{NL} } \right]_{2i,j} = \left[ {\begin{array}{*{20}c} {\tilde{B}_{2NLj}^{11} } & {\tilde{B}_{2NLj}^{12} } & \cdots & {\tilde{B}_{2NLj}^{1l} } \\ {\tilde{B}_{2NLj}^{21} } & {\tilde{B}_{2NLj}^{22} } & \cdots & {\tilde{B}_{2NLj}^{1l} } \\ \vdots & \vdots & \ddots & \vdots \\ {\tilde{B}_{2NLj}^{k1} } & {\tilde{B}_{2NLj}^{k2} } & \cdots & {\tilde{B}_{2NLj}^{kl} } \\ \end{array} } \right] \\ & \left[ {B_{NL} } \right]_{3i,j} = \left[ {\begin{array}{*{20}c} {B_{3NLj}^{11} } & {B_{3NLj}^{12} } & \ldots & {B_{3NLj}^{1l} } \\ {B_{3NLj}^{21} } & {B_{3NLj}^{22} } & \ldots & {B_{3NLj}^{1l} } \\ \vdots & \vdots & \ddots & \vdots \\ {B_{3NLj}^{k1} } & {B_{3NLj}^{k2} } & \ldots & {B_{3Lj}^{kl} } \\ \end{array} } \right] ,\quad \left[ {\tilde{B}_{NL} } \right]_{3i,j} = \left[ {\begin{array}{*{20}c} {\tilde{B}_{3NLj}^{11} } & {\tilde{B}_{3NLj}^{12} } & \cdots & {\tilde{B}_{3NLj}^{1l} } \\ {\tilde{B}_{3NLj}^{21} } & {\tilde{B}_{3NLj}^{22} } & \cdots & {\tilde{B}_{3NLj}^{1l} } \\ \vdots & \vdots & \ddots & \vdots \\ {\tilde{B}_{3NLj}^{k1} } & {\tilde{B}_{3NLj}^{k2} } & \cdots & {\tilde{B}_{3NLj}^{kl} } \\ \end{array} } \right] \\ & B_{1NLJ}^{kl} = \frac{1}{{2R^{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{k,\varphi } N_{l,\varphi } } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],\quad \tilde{B}_{1NLJ}^{kl} = \frac{1}{{R^{2} }}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{k,\varphi } N_{l,\varphi } } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ & B_{2NLJ}^{kl} = \frac{1}{{2R^{2} \sin^{2} \left( \varphi \right)}}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{k,\theta } N_{l,\theta } } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],\quad \tilde{B}_{2NLJ}^{kl} = \frac{1}{{R^{2} \sin^{2} \left( \varphi \right)}}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{k,\theta } N_{l,\theta } } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ & B_{3NLJ}^{kl} = \frac{1}{{R^{2} \sin \left( \varphi \right)}}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{k,\theta } N_{l,\varphi } } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],\quad \tilde{B}_{3NLJ}^{kl} = \frac{1}{{R^{2} \sin \left( \varphi \right)}}\left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & {N_{k,\theta } N_{l,\varphi } + N_{k,\varphi } N_{l,\theta } } & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right]. \\ \end{aligned}$$
(30)

Appendix 4

Shape functions of the spherical shell superelement including pole in the local coordinate system are expressed as follows:

  1. (a)

    \(M = 3, N = 16\):

    $$\begin{gathered} \begin{array}{*{20}c} {N_{i} = \frac{{\gamma \left( {\gamma - 1} \right)}}{2}} & {i = 1} \\ \end{array} \hfill \\ \begin{array}{*{20}l} {N_{{2,i}} = \frac{{\left( {1 - \gamma } \right)\left( {1 + \gamma } \right)}}{4} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {i = 1 - 16} \hfill \\ {\quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right]} \hfill & {} \hfill \\ \end{array} \hfill \\ \begin{array}{*{20}l} {N_{{3,i}} = \frac{{\gamma \left( {\gamma + 1} \right)}}{8} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {i = 1 - 16} \hfill \\ {\quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right]} \hfill & {} \hfill \\ \end{array} \hfill \\ \end{gathered}$$
    (31)
  2. (b)

    \(M = 2, N = 16\):

    $$\begin{gathered} \begin{array}{*{20}c} {N_{i} = \frac{{\left( {1 - \lambda } \right)}}{2}} & {i = 1} \\ \end{array} \hfill \\ \begin{array}{*{20}l} {N_{{2,i}} = \frac{{\left( {1 + \lambda } \right)}}{{16}} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {i = 1 - 16} \hfill \\ {\quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right]} \hfill & {} \hfill \\ {\quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right]} \hfill & {} \hfill \\ \end{array} \hfill \\ \end{gathered}$$
    (32)

Also, the shape functions of the spherical shell superelement without pole are given as follows:

  1. (a)

    \(M = 3, N = 16\):

    $$\begin{array}{*{20}l} \begin{aligned} & N_{{1,{\text{i}}}} = \frac{{\gamma \left( {\gamma - 1} \right)}}{8} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \begin{aligned} & N_{{2,{\text{i}}}} = \frac{{\left( {1 - \gamma } \right)\left( {1 + \gamma } \right)}}{4} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \begin{aligned} & N_{{3,{\text{i}}}} = \frac{{\gamma \left( {\gamma + 1} \right)}}{8} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \end{array}$$
    (33)
  2. (b)

    \(M = 2, N = 16\):

    $$\begin{array}{*{20}l} \begin{aligned} & N_{{1,{\text{i}}}} = \frac{{\left( {1 - \lambda } \right)}}{{16}} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16} \hfill \\ \begin{aligned} & N_{{2,{\text{i}}}} = \frac{{\left( {1 + \lambda } \right)}}{{16}} \times \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right) \\ & \quad \times \left[ {1 + \cos \left( {4\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {2\left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right)} \right] \\ & \quad \times \left[ {1 + \cos \left( {\pi ~\left( {\mu + 1} \right) - \frac{{\left( {i - 1} \right) \times \pi }}{8}} \right)} \right] \\ \end{aligned} \hfill & {i = 1 - 16~} \hfill \\ \end{array} .$$
    (34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamloofard, M., Hosseinzadeh, A. & Movahhedy, M.R. Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells. Engineering with Computers 37, 3551–3567 (2021). https://doi.org/10.1007/s00366-020-01015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01015-w

Keywords

Navigation