Skip to main content

Advertisement

Log in

Luliconazole, a highly effective imidazole, against Fusarium species complexes

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Luliconazole is a new antifungal that was primarily used for the treatment of dermatophytosis. However, some studies have shown that it has excellent efficacy against Aspergillus and Candida species in vitro. The present study aimed to evaluate of luliconazole activity against some Fusarium species complex isolates. In this study, 47 isolates of Fusarium were tested against several antifungals including luliconazole. All species were identified using morphology features, and PCR sequencing and antifungal susceptibility were performed according to CLSIM38 A3 guideline. Our results revealed that luliconazole has a very low minimum inhibitory concentration value (0.0078–1 µg/ml) in comparison with other tested antifungals. Amphotericin B had a poor effect with a high MIC90 (64 µg/ml), followed by terbinafine (32 µg/ml), posaconazole (16 µg/ml), caspofungin (16 µg/ml), voriconazole (4 µg/ml), and itraconazole (4 µg/ml). Overall, our findings indicated that luliconazole has great activity against environmental and clinical Fusarium species complexes in comparison to tested antifungals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gupta AK, Foley KA, Versteeg SG (2017) New antifungal agents and new formulations against dermatophytes. Mycopathologia 182(1–2):127–141. https://doi.org/10.1007/s11046-016-0045-0

    Article  CAS  PubMed  Google Scholar 

  2. Jarratt M, Jones T, Adelglass J et al (2014) Efficacy and safety of once-daily luliconazole 1% cream in patients ≥ 12 years of age with interdigital tinea pedis: a phase 3, randomized, double-blind, vehicle-controlled study. J Drugs Dermatol 13(7):838–846

    CAS  PubMed  Google Scholar 

  3. Jones T, Tavakkol A (2013) Safety and tolerability of luliconazole solution 10% in patients with moderate to severe distal subungual onychomycosis. Antimicrob Agents Chemother 57(6):2684–2689. https://doi.org/10.1128/AAC.02370-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watanabe S, Takahashi H, Nishikawa T et al (2006) A comparative clinical study between 2 weeks of luliconazole 1% cream treatment and 4 weeks of bifonazole 1% cream treatment for tinea pedis. Mycoses 49(3):236–241. https://doi.org/10.1111/j.1439-0507.2006.01218.x

    Article  CAS  PubMed  Google Scholar 

  5. Wiederhold NP, Fothergill AW, McCarthy DI, Tavakkol A (2014) Luliconazole demonstrates potent in vitro activity against dermatophytes recovered from patients with onychomycosis. Antimicrob Agents Chemother 58(6):3553–3555. https://doi.org/10.1128/AAC.02706-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shokoohi GR, Badali H, Mirhendi H et al (2017) In vitro activities of luliconazole, lanoconazole, and efinaconazole compared with those of five antifungal drugs against melanized fungi and relatives. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00635-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abastabar M, Rahimi N, Meis JF et al (2016) Potent activities of novel imidazoles lanoconazole and luliconazole against a collection of azole-resistant and -susceptible Aspergillus fumigatus strains. Antimicrob Agents Chemother 60(11):6916–6919. https://doi.org/10.1128/AAC.01193-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zargaran M, Taghipour S, Kiasat N et al (2017) Luliconazole, an alternative antifungal agent against Aspergillus terreus. J Mycol Med 27(3):351–356. https://doi.org/10.1016/j.mycmed.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  9. Omran SM, Taghizadeh-Armaki M, Zarrinfar H et al (2019) In-vitro antifungal susceptibility testing of lanoconazole and luliconazole against Aspergillus flavus as an important agent of invasive aspergillosis. J Infect Chemother 25(2):157–160. https://doi.org/10.1016/j.jiac.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  10. Todokoro D, Suzuki T, Tamura T et al (2019) Efficacy of luliconazole against broad-range filamentous fungi including Fusarium solani species complex causing fungal keratitis. Cornea 38(2):238–242. https://doi.org/10.1097/ico.0000000000001812

    Article  PubMed  Google Scholar 

  11. Taghipour S, Kiasat N, Shafiei S et al (2018) Luliconazole, a new antifungal against Candida species isolated from different sources. J Mycol Med 28(2):374–378. https://doi.org/10.1016/j.mycmed.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  12. Jain P, Gupta V, Misra A et al (2011) Current status of Fusarium infection in human and animal. Asian J Anim Vet Adv 6:201–227. https://doi.org/10.3923/ajava.2011.201.227

    Article  Google Scholar 

  13. Dabas Y, Bakhshi S, Xess I (2016) Fatal cases of bloodstream infection by Fusarium solani and review of published literature. Mycopathologia 181(3–4):291–296. https://doi.org/10.1007/s11046-015-9960-8

    Article  PubMed  Google Scholar 

  14. Schwartz KL, Sheffield H, Richardson SE, Sung L, Morris SK (2015) Invasive fusariosis: a single pediatric center 15-year experience. J Pediatr Infect Dis Soc 4(2):163–170. https://doi.org/10.1093/jpids/pit080

    Article  Google Scholar 

  15. Horn DL, Freifeld AG, Schuster MG et al (2014) Treatment and outcomes of invasive fusariosis: review of 65 cases from the PATH Alliance((R)) registry. Mycoses 57(11):652–658. https://doi.org/10.1111/myc.12212

    Article  PubMed  Google Scholar 

  16. Dignani MC, Anaissie E (2004) Human fusariosis. Clin Microbiol Infect 10(Suppl 1):67–75. https://doi.org/10.1111/j.1470-9465.2004.00845.x

    Article  PubMed  Google Scholar 

  17. Carneiro HA, Coleman JJ, Restrepo A, Mylonakis E (2011) Fusarium infection in lung transplant patients: report of 6 cases and review of the literature. Medicine (Baltimore) 90(1):69–80. https://doi.org/10.1097/MD.0b013e318207612d

    Article  CAS  Google Scholar 

  18. Labois A, Gray C, Lepretre S (2011) Successful treatment of disseminated fusariosis with voriconazole in an acute lymphoblastic leukaemia patient. Mycoses 54(Suppl 4):8–11. https://doi.org/10.1111/j.1439-0507.2011.02136.x

    Article  CAS  PubMed  Google Scholar 

  19. Mayr U, Rasch S, Schmid RM, Huber W, Lahmer T (2017) First description of spontaneous fungal peritonitis caused by Fusarium solani in a critically ill patient with liver cirrhosis. New Microbes New Infect 20:16–17. https://doi.org/10.1016/j.nmni.2017.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nucci M, Varon AG, Garnica M et al (2013) Increased incidence of invasive fusariosis with cutaneous portal of entry. Braz Emerg Infect Dis 19(10):1567–1572. https://doi.org/10.3201/eid1910.120847

    Article  Google Scholar 

  21. Carlesse F, Amaral AC, Goncalves SS et al (2017) Outbreak of Fusarium oxysporum infections in children with cancer: an experience with 7 episodes of catheter-related fungemia. Antimicrob Resist Infect Control 6:93. https://doi.org/10.1186/s13756-017-0247-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ranawaka RR, Nagahawatte A, Gunasekara TA (2015) Fusarium onychomycosis: prevalence, clinical presentations, response to itraconazole and terbinafine pulse therapy, and 1-year follow-up in nine cases. Int J Dermatol 54(11):1275–1282. https://doi.org/10.1111/ijd.12906

    Article  CAS  PubMed  Google Scholar 

  23. Muraosa Y, Oguchi M, Yahiro M et al (2017) Epidemiological study of Fusarium species causing invasive and superficial fusariosis in Japan. Med Mycol J 58(1):E5–E13. https://doi.org/10.3314/mmj.16-00024

    Article  PubMed  Google Scholar 

  24. Varon AG, Nouer SA, Barreiros G et al (2014) Superficial skin lesions positive for Fusarium are associated with subsequent development of invasive fusariosis. J Infect 68(1):85–89. https://doi.org/10.1016/j.jinf.2013.08.011

    Article  PubMed  Google Scholar 

  25. Ribas R, Daniela A, Spolti P et al (2016) Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Braz J Microbiol 47(4):793–799. https://doi.org/10.1016/j.bjm.2016.06.006

    Article  CAS  Google Scholar 

  26. Lalitha P, Shapiro BL, Srinivasan M et al (2007) Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch Ophthalmol 125(6):789–793. https://doi.org/10.1001/archopht.125.6.789

    Article  CAS  PubMed  Google Scholar 

  27. Ozturk F, Yavas GF, Kusbeci T et al (2007) Efficacy of topical caspofungin in experimental fusarium keratitis. Cornea 26(6):726–728. https://doi.org/10.1097/ICO.0b013e3180553b9d

    Article  PubMed  Google Scholar 

  28. Taylan Sekeroglu H, Erdem E, Yagmur M et al (2012) Successful medical management of recalcitrant Fusarium solani keratitis: molecular identification and susceptibility patterns. Mycopathologia 174(3):233–237. https://doi.org/10.1007/s11046-012-9542-y

    Article  CAS  PubMed  Google Scholar 

  29. Scher RK, Nakamura N, Tavakkol A (2014) Luliconazole: a review of a new antifungal agent for the topical treatment of onychomycosis. Mycoses 57(7):389–393. https://doi.org/10.1111/myc.12168

    Article  CAS  PubMed  Google Scholar 

  30. Gupta AK, Daigle D (2016) A critical appraisal of once-daily topical luliconazole for the treatment of superficial fungal infections. Infect Drug Resist 9:1–6. https://doi.org/10.2147/IDR.S61998

    Article  PubMed  PubMed Central  Google Scholar 

  31. Geiser DM, del Mar J-GM, Kang S et al (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110(5–6):473–479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0

    Article  CAS  Google Scholar 

  32. CLSI (2017) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi, 3rd ed. CLSI document M38-3rd. Clinical and Laboratory Standards Institute, Wayne, PA

  33. Espinel-Ingroff A, Colombo AL, Cordoba S et al (2016) International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI Broth Microdilution method. Antimicrob Agents Chemother 60(2):1079–1084. https://doi.org/10.1128/AAC.02456-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Draelos ZD, Vlahovic TC, Gold MH, Parish LC, Korotzer A (2014) A randomized, double-blind, vehicle-controlled trial of luliconazole cream 1% in the treatment of interdigital tinea pedis. J Clin Aesthet Dermatol 7(10):20–27

    PubMed  PubMed Central  Google Scholar 

  35. Watanabe S, Kishida H, Okubo A (2017) Efficacy and safety of luliconazole 5% nail solution for the treatment of onychomycosis: a multicenter, double-blind, randomized phase III study. J Dermatol 44(7):753–759. https://doi.org/10.1111/1346-8138.13816

    Article  CAS  PubMed  Google Scholar 

  36. Koga H, Nanjoh Y, Kaneda H, Yamaguchi H, Tsuboi R (2012) Short-term therapy with luliconazole, a novel topical antifungal imidazole, in guinea pig models of tinea corporis and tinea pedis. Antimicrob Agents Chemother 56(6):3138–3143. https://doi.org/10.1128/AAC.05255-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeda J, Nanjoh Y, Koga H et al (2016) In vitro antifungal activity of luliconazole against Trichophyton spp. Med Mycol J 57(1):J1–6. https://doi.org/10.3314/mmj.57.J1

    Article  CAS  PubMed  Google Scholar 

  38. Saunders J, Maki K, Koski R, Nybo SE (2017) Tavaborole, efinaconazole, and luliconazole: three new antimycotic agents for the treatment of dermatophytic fungi. J Pharm Pract 30(6):621–630. https://doi.org/10.1177/0897190016660487

    Article  PubMed  Google Scholar 

  39. Koga H, Nanjoh Y, Makimura K, Tsuboi R (2009) In vitro antifungal activities of luliconazole, a new topical imidazole. Med Mycol 47(6):640–647. https://doi.org/10.1080/13693780802541518

    Article  CAS  PubMed  Google Scholar 

  40. Abastabar M, Al-Hatmi AM, Moghaddam MV et al (2018) Potent activities of luliconazole, lanoconazole, and eight comparators against molecularly characterized Fusarium species. Antimicrob Agents Chemother 62(5):e00009–18. https://doi.org/10.1128/AAC.00009-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Hatmi A (2016) Phylogeny, diagnostics and antifungal susceptibility of clinically relevant Fusarium species: Ph.D. thesis. University of Amsterdam, Amsterdam, the Netherlands. http://hdl.handle.net/11245/1.547668)

  42. Al-Hatmi AM, van Diepeningen AD, Curfs-Breuker I, de Hoog GS, Meis JF (2014) Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. J Antimicrob Chemother 70(4):1068–1071. https://doi.org/10.1093/jac/dku505

    Article  CAS  PubMed  Google Scholar 

  43. Alastruey-Izquierdo A, Cuenca-Estrella M, Monzón A, Mellado E, Rodríguez-Tudela JL (2008) Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother 61(4):805–809. https://doi.org/10.1093/jac/dkn022

    Article  CAS  PubMed  Google Scholar 

  44. Taj-Aldeen SJ, Salah H, Al-Hatmi AM et al (2016) In vitro resistance of clinical Fusarium species to amphotericin B and voriconazole using the EUCAST antifungal susceptibility method. Diagn Microbiol Infect Dis 85(4):438–443. https://doi.org/10.1016/j.diagmicrobio.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  45. Spader TB, Venturini TP, Cavalheiro AS et al (2011) In vitro interactions between amphotericin B and other antifungal agents and rifampin against Fusarium spp. Mycoses 54(2):131–136. https://doi.org/10.1111/j.1439-0507.2009.01773.x

    Article  CAS  PubMed  Google Scholar 

  46. Tupaki-Sreepurna A, Al-Hatmi AM, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinico-mycological study of keratitis infections in Chennai, India. Mycoses 60(4):230–233. https://doi.org/10.1111/myc.12578

    Article  CAS  PubMed  Google Scholar 

  47. Al-Hatmi AM, Meis JF, de Hoog GS (2016) Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog 12(4):e1005464. https://doi.org/10.1371/journal.ppat.1005464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Katiyar SK, Edlind TD (2009) Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother 53(5):1772–1778. https://doi.org/10.1128/AAC.00020-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lass-Florl C, Mayr A, Perkhofer S et al (2008) Activities of antifungal agents against yeasts and filamentous fungi: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 52(10):3637–3641. https://doi.org/10.1128/AAC.00662-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taj-Aldeen S (2017) Reduced multidrug susceptibility profile is a common feature of opportunistic Fusarium species: Fusarium multi-drug resistant pattern. J Fungi 3(18):1–15. https://doi.org/10.3390/jof3020018

    Article  CAS  Google Scholar 

  51. Raad II, Hachem RY, Herbrecht R et al (2006) Posaconazole as salvage treatment for invasive fusariosis in patients with underlying hematologic malignancy and other conditions. Clin Infect Dis 42(10):1398–1403. https://doi.org/10.1086/503425

    Article  CAS  PubMed  Google Scholar 

  52. Guarro J (2013) Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur J Clin Microbiol Infect Dis 32(12):1491–1500. https://doi.org/10.1007/s10096-013-1924-7

    Article  CAS  PubMed  Google Scholar 

  53. Venturini TP, Chassot F, Loreto ES et al (2016) Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp. Med Mycol 54(5):550–555. https://doi.org/10.1093/mmy/myv120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Medical Mycology, Ahvaz Jundishapur University of Medical Sciences for their support.

Funding

This study was supported by Infectious and Tropical Diseases Research Centre, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences (OG: 9722).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zarei-Mahmoudabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflicts of interest.

Ethical approval

This project approved by ethical committee of Ahvaz Jundishapur University of Medical Sciences (IR.AJUMS.REC.1397.314).

Additional information

Edited by Volkhard A. J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaghani, M., Hivary, S., Taghipour, S. et al. Luliconazole, a highly effective imidazole, against Fusarium species complexes. Med Microbiol Immunol 209, 603–612 (2020). https://doi.org/10.1007/s00430-020-00672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-020-00672-4

Keywords

Navigation