Skip to main content

Advertisement

Log in

LncRNA SNHG5 regulates SOX4 expression through competitive binding to miR-489-3p in acute myeloid leukemia

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

Currently, lncRNA plays an important role in the occurrence and development of acute myeloid leukemia (AML), including SNHG5. However, the role and mechanism of SNHG5 in AML remains unclear. In this study, we explored the regulatory mechanism of SNHG5 in the development of AML.

Methods and results

QRT-PCR was used to investigate the expression of SNHG5, miR-489-3p, and SOX. The proliferation and apoptosis of AML cells were analyzed by cell transfection, cell counting kit-8 (CCK8), and flow cytometric analysis. Moreover, the expression analysis of marker proteins was detected by western blot. Through luciferase activity assay, RNA pull-down, and RNA-binding protein immunoprecipitation (RIP), we proved that SNHG5 could bind miR-489-3p and SOX4 which might be the target gene of miR-489-3p.

Results

We first found that SNHG5 was up-regulated in both AML patient bone marrow samples and various AML cell lines. Second, we found that knockdown of SNHG5 inhibited proliferation of AML cells and promoted apoptosis. It was found that SNHG5 could bind miR-489-3p, and the relative expression of SNHG5 was negatively correlated with miR-489-3p. Further results suggested that SOX4 might be the target gene of miR-489-3p. Finally, our experimental data indicated that knockdown of SNHG5 could reduce the tumor volume and down-regulated SOX4 levels in vivo.

Conclusions

Our results demonstrated that SNHG5 affected the expression of SOX4 through binding miR-489-3p to regulate proliferation and apoptosis of AML, which might act as a prospective prognostic biological marker and a promising therapeutic target for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Houda H. Angiogenesis and acute myeloid leukemia. Hematology. 2014;19(6):311–23.

    Article  Google Scholar 

  2. Grimwade D. The clinical significance of cytogenetic abnormalities in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14(3):497–529.

    Article  CAS  Google Scholar 

  3. Omar AW, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121(18):3563–72.

    Article  Google Scholar 

  4. Alessandro I, Valentina S, Marilena C, Federica L, Giuseppe V, Sarah P, et al. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment. Expert Rev Hematol. 2014;7(6):807–18.

    Article  Google Scholar 

  5. Ha PM, Cho SA, Kyung Hyun Y, Moon Hee Y, Young AJ, Hyo Soo L, et al. Gene expression profile related to prognosis of acute myeloid leukemia. Oncol Rep. 2007;18(6):1395–402.

    Google Scholar 

  6. Basturk A, Akinci S, Hacibekiroglu T, Guney T, Kutlucan A, Ceran F, et al. Prognostic significance of flow cytometry findings in Turkish adult acute leukemia patients. Eur Rev Med Pharmacol Sci. 2015;19(18):3360–6.

    CAS  PubMed  Google Scholar 

  7. Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochem Biophys Acta. 2014;1839(11):1097–109.

    CAS  PubMed  Google Scholar 

  8. Gibb EA, Brown CJ, Wan LL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10(1):38.

    Article  CAS  Google Scholar 

  9. Fernando TR, Rodriguez-Malave NI, Waters EV, Yan W, Casero D, Basso G, et al. LncRNA expression discriminates karyotype and predicts survival in B-lymphoblastic leukemia. Mol Cancer Res. 2015;13(5):839–51.

    Article  CAS  Google Scholar 

  10. Chen L, Wang W, Cao L, Li Z, Wang X. Long non-coding RNA CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia. Mol Cells. 2016;39(4):330–6.

    Article  CAS  Google Scholar 

  11. He B, Bai Y, Kang W, Zhang X, Jiang X. LncRNA SNHG5 regulates imatinib resistance in chronic myeloid leukemia via acting as a CeRNA against MiR-205-5p. Am J Cancer Res. 2017;7(8):1704.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang L, He D, Yang D, Chen Z, Pan Q, Mao A, et al. MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett. 2014;588(11):2009–155.

    Article  CAS  Google Scholar 

  13. Xie Z, Cai L, Li R, Zheng J, Wu H, Yang X, et al. Down-regulation of miR-489 contributes into NSCLC cell invasion through targeting SUZ12. Tumour Biol. 2015;36(8):6497–505.

    Article  CAS  Google Scholar 

  14. Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber PB, Di Ruscio A, et al. Sox4 is a key oncogenic target in C/EBPalpha mutant acute myeloid leukemia. Cancer Cell. 2013;24(5):575–88. https://doi.org/10.1016/j.ccr.2013.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu JW, Hsieh MS, Hou HA, Chen CY, Tien HF, Lin LI. Overexpression of SOX4 correlates with poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J. 2017;7(8):e593. https://doi.org/10.1038/bcj.2017.74.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fernando TR, Contreras JR, Zampini M, Rodriguez-Malave NI, Alberti MO, Anguiano J, et al. The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Mol Cancer. 2017;16(1):126. https://doi.org/10.1186/s12943-017-0692-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Press OU. World Medical Association declaration of Helsinki. Gastroenterologia Japonica. 1991;26(2):269–70.

    Article  Google Scholar 

  18. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for thecare and use of laboratory animals. Ilar J. 1997;38(1):41–8.

    Article  Google Scholar 

  19. Shi DB, Wang YW, Xing AY, Gao JW, Zhang H, Guo XY, et al. C/EBPα-induced miR-100 expression suppresses tumor metastasis and growth by targeting ZBTB7A in gastric cancer. Cancer Lett. 2015;369(2):376–85.

    Article  CAS  Google Scholar 

  20. Wang X, Chen H, Bai J, He A. MicroRNA: an important regulator in acute myeloid leukemia. Cell Biol Int. 2017;41(9):936–45. https://doi.org/10.1002/cbin.10770.

    Article  CAS  PubMed  Google Scholar 

  21. Wallace JA, O'Connell RM. MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood. 2017;130(11):1290–301. https://doi.org/10.1182/blood-2016-10-697698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget. 2017;8(2):3666–822. https://doi.org/10.18632/oncotarget.12343.

    Article  PubMed  Google Scholar 

  23. Liu Q, Yang G, Qian Y. Loss of MicroRNA-489-3p promotes osteosarcoma metastasis by activating PAX3-MET pathway. Mol. Carcinog. 2016;56(4):1312–21.

    Article  Google Scholar 

  24. Apostolos Z, Lambrou GI, Nikos M, Patroklos K, Gregory P, Krinio G, et al. New miRNA profiles accurately distinguish renal cell carcinomas and upper tract urothelial carcinomas from the normal kidney. PLoS ONE. 2014;9(3):e91646.

    Article  Google Scholar 

  25. Enrico M, Luigi M, Apurva C, Masamichi H, Guido M, Matteo B, et al. Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma. J Urol. 2014;191(4):e244-e.

    Google Scholar 

  26. Ma Z, Xue S, Zeng B, Qiu D. lncRNA SNHG5 is associated with poor prognosis of bladder cancer and promotes bladder cancer cell proliferation through targeting p27. Oncol Lett. 2018;15(2):1924–30.

    PubMed  Google Scholar 

  27. Wang Z, Pan L, Yu H, Wang Y. The long non-coding RNA SNHG5 regulates gefitinib resistance in lung adenocarcinoma cells by targeting miR-377/CASP1 axis. Biosci Rep. 2018;38(4):BSR20180400.

    Article  Google Scholar 

  28. Lu Y, Wang S, Yue L, Tognetti L, Rui T, Kang Z, et al. SNHG5 promotes proliferation and induces apoptosis in melanoma by sponging miR-155. RSC Adv. 2018;8(11):6160–8.

    Article  Google Scholar 

  29. Zhao L, Guo H, Zhou B, Feng J, Li Y, Han T, et al. Long non-coding RNA SNHG5 suppresses gastric cancer progression by trapping MTA2 in the cytosol. Oncogene. 2016;35(44):5770.

    Article  CAS  Google Scholar 

  30. Damas ND, Marcatti M, Côme C, Christensen LL, Nielsen MM, Baumgartner R, et al. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat Commun. 2016;7:13875.

    Article  CAS  Google Scholar 

  31. Fung TK, Leung AY, So CW. Sox4you: a new player in C/EBPalpha leukemia. Cancer Cell. 2013;24(5):557–9. https://doi.org/10.1016/j.ccr.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Ju HL, Yuan XY, Wang TJ, Lai BQ. SOX4 is a potential prognostic factor in human cancers: a systematic review and meta-analysis. Clin Transl Oncol. 2016;18(1):65–72. https://doi.org/10.1007/s12094-015-1337-4.

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Liu H, Li T, Qin L. MicroRNA3395p inhibits cell proliferation of acute myeloid leukaemia by directly targeting SOX4. Mol Med Rep. 2018;18(6):5261–9. https://doi.org/10.3892/mmr.2018.9552.

    Article  CAS  PubMed  Google Scholar 

  34. Pines J. The cell cycle kinases. Semin Cancer Biol. 1994;5(4):305–13.

    CAS  PubMed  Google Scholar 

  35. John RR, Malathi N, Ravindran C, Anandan S. Mini review: Multifaceted role played by cyclin D1 in tumor behavior. Indian J Dent Res. 2017;28(2):187–92. https://doi.org/10.4103/ijdr.IJDR_697_16.

    Article  PubMed  Google Scholar 

  36. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6(4):353–67. https://doi.org/10.1158/2159-8290.cd-15-0894.

    Article  CAS  PubMed  Google Scholar 

  37. Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev. 2017;161(Pt B):201–10. https://doi.org/10.1016/j.mad.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  38. Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34. https://doi.org/10.1016/j.bbrc.2017.06.190.

    Article  CAS  PubMed  Google Scholar 

  39. Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3):161–8.

    Article  CAS  Google Scholar 

  40. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci. 2006;11(2):1696–701.

    Article  CAS  Google Scholar 

  41. Xu KH, Lu DP. Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leuk Res. 2010;34(5):658–65. https://doi.org/10.1016/j.leukres.2009.08.017.

    Article  CAS  PubMed  Google Scholar 

  42. Her Z, Yong KSM, Paramasivam K, Tan WWS, Chan XY, Tan SY, et al. An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. J Hematol Oncol. 2017;10(1):162. https://doi.org/10.1186/s13045-017-0532-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XYY and WGZ conceived and designed the experiments, MYF and CCW analyzed and interpreted the results of the experiments, and LH and CMY performed the experiments.

Corresponding author

Correspondence to Wanggang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests, and all authors should confirm its accuracy.

Ethics approval and consent to participate

The animal use protocol listed below has been reviewed and approved by the Animal Ethical and Welfare Committee.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11_2020_1345_MOESM1_ESM.jpg

Figure S1 The cell cycle examined by flow cytometry about the effects of SNHG5 knockdown on cells cycle in KG-1a and HL-60 cells. Figure S2 Cells cycle detected by flow cytometry in KG-1a and HL-60 cells transfected with inh NC and si-NC, inh NC and si-SNHG5, or si-SNHG5 and miR-489-3p inh (JPG 3063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, X., Zhang, W., Fang, M. et al. LncRNA SNHG5 regulates SOX4 expression through competitive binding to miR-489-3p in acute myeloid leukemia. Inflamm. Res. 69, 607–618 (2020). https://doi.org/10.1007/s00011-020-01345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01345-x

Keywords

Navigation