Skip to main content

Advertisement

Log in

Food Allergy Insights: A Changing Landscape

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The panorama of food allergies (FA) has changed profoundly in recent years. In light of recent advances in knowledge of pathogenetic mechanisms and a greater attention to the multifaceted range of possible clinical manifestations, there is a need for a critical review of past classifications. Changes in nutrition, environment and lifestyles around the world are modifying the global FA epidemiology and new FA phenotypes are also emerging. Furthermore, both biotechnological advances in this field and recent personalized therapies have improved the diagnostic and therapeutic approach to FA. Consequently, both the prevention and clinical management of FA are rapidly changing and new therapeutic strategies are emerging, even revolutionizing the current medical practice. Given the significant increase in the prevalence of FA in recent years, the objective of this review is to provide an updated and complete overview of current knowledge in its etiopathogenesis, diagnostics and therapy, useful not only for a better understanding of this frequent and complex pathology but also for practical guidance in its clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Onyinye I. Iweala, Shailesh K. Choudhary & Scott P. Commins

Abbreviations

FA:

Food allergies

OAS:

Oral allergy syndrome

DBPCFC:

Double-blind placebo-controlled food challenge

Treg T:

Regulatory cells

PAF:

Platelet activating factor

IL-4:

Interleukin-4

DCs:

Dendritic cells

TGF-β:

Transforming growth factor-beta

APCs:

Antigen-presenting cells

TSLP:

Thymic stromal lymphopoietin

IECs:

Intestinal epithelial cells

ILC2s:

Type 2 innate lymphoid cells

OFC:

Oral food challenge

CRD:

Component-resolved diagnostics

BAT:

Basophil activation test

Gp53 or LAMP-3:

Lysosomal-associated membrane glycoprotein-3

FAIT:

Food allergen-specific immunotherapy

PR:

Pathogenesis-related proteins

LTP:

Lipid transfer proteins

OIT:

Oral immunotherapy

EPIT:

Epicutaneous immunotherapy

References

  • Aalberse RC, Platts-Mills TA, Rispens T (2016) The developmental history of IgE and IgG4 antibodies in relation to atopy, eosinophilic esophagitis and the modified TH2 response. Curr Allergy Asthma Rep 16:45

    PubMed  PubMed Central  Google Scholar 

  • Aceves SS (2014) Food and aeroallergens in eosinophilic esophagitis: role of the allergist in patient management. Curr Opin Gastroenterol 30:391–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alessandri C, Ferrara R, Bernardi ML et al (2017) Diagnosing allergic sensitizations in the third millennium: why clinicians should know allergen molecule structures. Clin Transl Allergy 7:21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arasi S, Mennini M, Valluzzi R et al (2018) Precision medicine in food allergy. Diagnosing allergic sensitizations in the third millennium: why clinicians should know allergen molecule structures. Curr Opin Allergy Clin Immunol 18:438–443

    PubMed  Google Scholar 

  • Araujo RN, Franco PF, Rodrigues H et al (2016) Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol 46:213–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker MG, Sampson HA (2018) Phenotypes and endotypes of food allergy: a path to better understanding the pathogenesis and prognosis of food allergy. Ann Allergy Asthma Immunol 120:245–253

    PubMed  Google Scholar 

  • Bartuzi Z, Kaczmarski M, Czerwionka-Szaflarska M et al (2017) The diagnosis and management of food allergies. Position paper of the food allergy section the polish society of allergology. Postepy Dermatol Alergol 34:391–404

    PubMed  PubMed Central  Google Scholar 

  • Bauer RN, Manohar M, Singh AM et al (2015) The future of biologics: applications for food allergy. J Allergy Clin Immunol 135:312–323

    PubMed  PubMed Central  Google Scholar 

  • Baumgart K, Brown S, Gold M et al (2004) ASCIA guidelines for prevention of food anaphylactic reactions in schools, preschools and child-care centres. J Paediatr Child Health 40:669–671

    CAS  PubMed  Google Scholar 

  • Benedè S, Blázquez AB, Chiang D et al (2016) The rise of food allergy: environmental factors and emerging treatments. EBioMedicine 7:27–34

    PubMed  PubMed Central  Google Scholar 

  • Berg EA, Platts-Mills TA, Commins SP (2014) Drug allergens and food—the cetuximab and galactose-α-1,3-galactose story. Ann Allergy Asthma Immunol 112:97–101

    CAS  PubMed  Google Scholar 

  • Berin MC, Mayer L (2013) Can we produce true tolerance in patients with food allergy? J Allergy Clin Immunol 131:14–22

    CAS  PubMed  Google Scholar 

  • Berin MC, Sampson HA (2013) Food allergy: an enigmatic epidemic. Trends Immunol 34:390–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berni Canani R, Gilbert JA, Nagler CR (2015) The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Curr Opin Allergy Clin Immunol 15:243–249

    CAS  PubMed  Google Scholar 

  • Blázquez AB, Berin MC (2017) Microbiome and food allergy. Transl Res 179:199–203

    PubMed  Google Scholar 

  • Boyce JA, Assa’ad A, Burks AW et al (2010) NIAID-sponsored expert panel. Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. J Allergy Clin Immunol 126:1105–1118

    PubMed  PubMed Central  Google Scholar 

  • Burks AW, Jones SM, Boyce JA et al (2011) NIAID-sponsored 2010 guidelines for managing food allergy: applications in the pediatric population. Pediatrics 128:955–965

    PubMed  PubMed Central  Google Scholar 

  • Cabanillas B, Brehler AC, Novak N (2017) Atopic dermatitis phenotypes and the need for personalized medicine. Curr Opin Allergy Clin Immunol 17:309–315

    PubMed  PubMed Central  Google Scholar 

  • Cabrera-Chávez F, Rodríguez-Bellegarrigue CI, Figueroa-Salcido OG et al (2018) Food allergy prevalence in Salvadoran School children estimated by parent-report. Int J Environ Res Public Health 15:E2446

    PubMed  Google Scholar 

  • Caraballo L, Zakzuk J, Lee BW et al (2016) Particularities of allergy in the tropics. World Allergy Organ J 9:20

    PubMed  PubMed Central  Google Scholar 

  • Cardona V, Ansotegui IJ (2016) Component-resolved diagnosis in anaphylaxis. Curr Opin Allergy Clin Immunol 16:244–249

    PubMed  Google Scholar 

  • Chinthrajah RS, Tupa D, Prince BT et al (2015) Diagnosis of food allergy. Pediatr Clin N Am 62:1393–1408

    Google Scholar 

  • Chinthrajah RS, Hernandez JD, Boyd SD et al (2016) Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol 137:984–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu DK, Wood RA, French S et al (2019) Oral immunotherapy for peanut allergy (PACE): a systematic review and meta-analysis of efficacy and safety. Lancet 393:2222–2232

    CAS  PubMed  Google Scholar 

  • Cianferoni A (2016) Wheat allergy: diagnosis and management. J Asthma Allergy 9:13–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cianferoni A, Muraro A (2012) Food-induced anaphylaxis. Immunol Allergy Clin N Am 32:165–195

    Google Scholar 

  • Ciccarelli F, De Martinis M, Ginaldi L (2015) Glucocorticoids in patients with rheumatic diseases: friends or enemies of bone? Curr Med Chem 22:596–603

    CAS  PubMed  Google Scholar 

  • Ciccarelli F, De Martinis M, Sirufo MM et al (2016) Psoriasis induced by anti-tumor necrosis factor alpha agents: a comprehensive review of the literature. Acta Dermatovenerol Croat 24:169–174

    CAS  PubMed  Google Scholar 

  • Commins SP, Jerath MR, Cox K et al (2016) Delayed anaphylaxis to alpha-gal, an oligosaccharide in mammalian meat. Allergol Int 65:16–20

    CAS  PubMed  Google Scholar 

  • Corazza GR, Ginaldi L, Quaglione G et al (1998) Proliferating cell nuclear antigen expression is increased in small bowel epithelium in the elderly. Mech Ageing Dev 104:1–9

    CAS  PubMed  Google Scholar 

  • De Martinis M, Franceschi C, Monti D et al (2007) Apoptosis remodeling in immunosenescence: implications for strategies to delay ageing. Curr Med Chem 14:1389–1397

    PubMed  Google Scholar 

  • De Martinis M, Ciccarelli F, Sirufo MM et al (2016) An overview of environmental risk factors in systemic sclerosis. Expert Rev Clin Immunol 12:465–478

    PubMed  Google Scholar 

  • De Martinis M, Sirufo MM, Ginaldi L (2017) Allergy and aging: an old/new emerging health issue. Aging Dis 8:162–175

    PubMed  PubMed Central  Google Scholar 

  • De Martinis M, Sirufo MM, Ginaldi L (2019a) A “stadium” urticaria—cold urticaria is still a mostly unknown disease, with a wide spectrum of severity degrees and few therapeutic certainties: is omalizumab one of these? Reflections from a clinical case report. Iran Red Cresc Med J 21:e84250

    Google Scholar 

  • De Martinis M, Sirufo MM, Viscido A et al (2019b) Food allergies and ageing. Int J Mol Sci 20:E5580

    PubMed  Google Scholar 

  • De Martinis M, Sirufo MM, Ginaldi L (2019c) Solar urticaria, a disease with many dark sides: is omalizumab the right therapeutic response? Reflections from a clinical case report. Open Med 14:403–406

    Google Scholar 

  • De Martinis M, Sirufo MM, Suppa M et al (2020) IL-33/IL-31 axis in osteoporosis. Int J Mol Sci 21(4):1239. https://doi.org/10.3390/ijms21041239

    Article  PubMed Central  Google Scholar 

  • Deschildre A, Lejeune S (2018) How to cope with food allergy symptoms? Curr Opin Allergy Clin Immunol 18:234–242

    PubMed  Google Scholar 

  • Diesner SC, Bergmayr C, Pfitzner B et al (2016) A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin Immunol 173:10–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Toit G, Roberts G, Sayre PH et al (2015) LEAP Study Team. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372:803–813

    PubMed  PubMed Central  Google Scholar 

  • Ebisawa M, Ito K, Fujisawa T et al (2017) Japanese guidelines for food allergy 2017. Allergol Int 66:248–264

    PubMed  Google Scholar 

  • Ferguson A (1990) Food sensitivity or self-deception? N Engl J Med 323:476–478

    CAS  PubMed  Google Scholar 

  • Fiocchi A, Assa’ad A, Bahna S (2006) Food allergy and the introduction of solid foods to infants: a consensus document. Adverse reactions to Foods Committee, American College of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol 97:10–20

    PubMed  Google Scholar 

  • Fiocchi A, Burks W, Bahna SL et al (2012) Clinical use of probiotics in pediatric allergy (CUPPA): a World Allergy Organization Position Paper. World Allergy Organ J 5:148–167

    PubMed  PubMed Central  Google Scholar 

  • Fiocchi A, Pecora V, Valluzzi RL et al (2017) Use of biologics in severe food allergies. Curr Opin Allergy Clin Immunol 17:232–238

    PubMed  Google Scholar 

  • Fisher HR, Du Toit G, Bahnson HT et al (2018) The challenges of preventing food allergy: lessons learned from LEAP and EAT. Ann Allergy Asthma Immunol 121:313–319

    PubMed  Google Scholar 

  • Fleischer DM (2017) Life after LEAP: how to implement advice on introducing peanuts in early infancy. J Paediatr Child Health 53:3–9

    PubMed  Google Scholar 

  • Fu L, Jixiang Peng J, Zhao S et al (2016) Lactic acid bacteria-specific induction of CD4 + Foxp3 + T cells ameliorates shrimp tropomyosininduced allergic response in mice via suppression of mTOR signaling. Sci Rep 7:1987

    Google Scholar 

  • Fujimura T, Lum SZC, Nagata Y et al (2019) Influences of maternal factors over offspring allergies and the application for food allergy. Front Immunol 10:1933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garn H, Neves JF, Blumberg RS et al (2013) Effect of barrier microbes on organ-based inflammation. J Allergy Clin Immunol 131:1465–1478

    PubMed  PubMed Central  Google Scholar 

  • Genuneit J, Seibold AM, Apfelbacher CJ et al (2017) Task Force ‘Overview of systematic reviews in allergy epidemiology (OSRAE)’ of the EAACI Interest Group on Epidemiology. Overview of systematic reviews in allergy epidemiology. Allergy 72:849–856

    CAS  PubMed  Google Scholar 

  • Ginaldi L, De Martinis M, Ciccarelli F et al (2015) Increased levels of interleukin 31 (IL-31) in osteoporosis. BMC Immunol 16:60

    PubMed  PubMed Central  Google Scholar 

  • Ginaldi L, De Martinis M, Saitta S et al (2019) Interleukin-33 serum levels in postmenopausal women with osteoporosis. Sci Rep 9:3786

    PubMed  PubMed Central  Google Scholar 

  • Greenhawt MJ (2015) The learning early about peanut allergy study: the benefits of early peanut introduction, and a new horizon in fighting the food allergy epidemic. Pediatr Clin N Am 62:1509–1521

    Google Scholar 

  • Greenhawt MJ, Vickery BP (2015) Allergist-reported trends in the practice of food allergen oral immunotherapy. J Allergy Clin Immunol Pract 3:33–38

    PubMed  Google Scholar 

  • Gupta J, Johansson E, Bernstein JA et al (2016) Resolving the etiology of atopic disorders by genetic analysis of racial ancestry. Allergy Clin Immunol 138:676–699

    Google Scholar 

  • Halken S, Larenas-Linnemann D, Roberts G et al (2017) EAACI guidelines on allergen immunotherapy: prevention of allergy. Pediatr Allergy Immunol 28:728–745

    PubMed  Google Scholar 

  • Hauser M, Roulias A, Ferreira F et al (2010) Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol 6:1

    PubMed  PubMed Central  Google Scholar 

  • Heffler E, Puggioni F, Peveri S et al (2018) Extended IgE profile based on an allergen macroarray: a novel tool for precision medicine in allergy diagnosis. World Allergy Organ 11:7

    Google Scholar 

  • Hemmer W, Klug C, Swoboda I (2016) Update on the bird-egg syndrome and genuine poultry meat allergy. Allergo J Int 25:68–75

    PubMed  PubMed Central  Google Scholar 

  • Henson M, Burks AW (2012) The future of food allergy therapeutics. Semin Immunopathol 34:703–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyos-Bachiloglu R, Ivanovic-Zuvic D, Álvarez J et al (2014) Prevalence of parent-reported immediate hypersensitivity food allergy in Chilean school-aged children. Allergol Immunopathol 42:527–532

    CAS  Google Scholar 

  • Huang YJ, Marsland BJ, Bunyavanich S et al (2017) The microbiome in allergic disease: current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma, Immunology and the European Academy of Allergy and Clinical Immunology. Allergy Clin Immunol 139:1099–1110

    Google Scholar 

  • Iweala OI, Nagler CR (2019) The microbiome and food allergy. Annu Rev Immunol 37:377–403

    CAS  PubMed  Google Scholar 

  • Iweala OI, Choudhary SK, Commins SP (2018) Food allergy. Curr Gastroenterol Rep 20:17

    PubMed  PubMed Central  Google Scholar 

  • Jeebhay MF, Moscato G, Bang BE et al (2019) Food processing and occupational respiratory allergy—a EAACI position paper. Allergy 74:1852–1871

    CAS  PubMed  Google Scholar 

  • Johnston LK, Chien KB, Bryce PJ (2014) The immunology of food allergy. J Immunol 192:2529–2534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones SM, Burks AW (2017) Food allergy. N Engl J Med 377:2294–2295

    PubMed  Google Scholar 

  • Kattan JD (2015) Optimizing the diagnosis of food allergy. Immunol Allergy Clin N Am 35:61–76

    Google Scholar 

  • Keet C (2011) Recognition and management of food induced anaphylaxis. Pediatr Clin N Am 58:377–388

    Google Scholar 

  • Keet CA, Wood RA (2014) Emerging therapies for food allergy. J Clin Invest 124:1880–1886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JE, Kim JS, Cho DH et al (2016) Molecular mechanisms of cutaneous inflammatory disorder: atopic dermatitis. Int J Mol Sci 17:1234

    PubMed Central  Google Scholar 

  • Ko E, Chehade M (2018) Biological therapies for eosinophilic esophagitis: where do we stand? Clin Rev Allergy Immunol 55:205–216

    CAS  PubMed  Google Scholar 

  • Kowalski ML, Ansotegui I, Aberer W (2016) Risk and safety requirements for diagnostic and therapeutic procedures in allergology: world Allergy Organization Statement. World Allergy Organ J 9:33

    PubMed  PubMed Central  Google Scholar 

  • Kuhlen JL (2015) Pathogenesis, newly recognized etiologies, and management of idiopathic anaphylaxis. Discov Med 19:137–144

    PubMed  PubMed Central  Google Scholar 

  • Lanser BJ (2015) Current options for the treatment of food allergy. Pediatr Clin N Am 62:1531–1549

    Google Scholar 

  • Leyva-Castillo JM, Galand C, Kam C et al (2019) Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50:1262–1275.e4

    CAS  PubMed  Google Scholar 

  • Liu MY, Yang ZY, Dai WK et al (2017) Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and b-lactoglobulininduced intestinal food allergy mouse models. World J Gastroenterol 23:2149–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luengo O, Cardona V (2014) Component resolved diagnosis: when should it be used? Clin Transl Allergy 4:28

    PubMed  PubMed Central  Google Scholar 

  • Lukschal A, Wallmann J, Bublin M et al (2016) Mimotopes for Api g 5, a relevant cross-reactive allergen, in the Celery-Mugwort-Birch-Spice syndrome. Allergy Asthma Immunol Res 8:124–131

    CAS  PubMed  Google Scholar 

  • Macchia D, Melioli G, Pravettoni V et al (2015) Guidelines for the use and interpretation of diagnostic methods in adult food allergy. Clin Mol Allergy 13:27

    PubMed  PubMed Central  Google Scholar 

  • Marrugo J, Hernández L, Villalba V (2008) Prevalence of self-reported food allergy in Cartagena (Colombia) population. Allergol Immunopathol 36:320–324

    CAS  Google Scholar 

  • Mazzucchelli G, Holzhauser T, Cirkovic Velickovic T et al (2018) Current (food) allergenic risk assessment: is it fit for novel foods?. Status Quo and Identification of Gaps, Mol Nutr Food Res, p 62

    Google Scholar 

  • Morita E, Kunie K, Matsuo H (2007) Food-dependent exercise-induced anaphylaxis. J Dermatol Sci 47:109–117

    CAS  PubMed  Google Scholar 

  • Morita E, Matsuo H, Chinuki Y et al (2009) Food-dependent exercise-induced anaphylaxis-importance of omega-5 gliadin and HMW-glutenin as causative antigens for wheat-dependent exercise-induced anaphylaxis. Allergol Int 58:493–498

    CAS  PubMed  Google Scholar 

  • Muñoz-Cano R, Pascal M, Araujo G et al (2017) Mechanisms, cofactors, and augmenting factors involved in anaphylaxis. Front Immunol 8:1193

    PubMed  PubMed Central  Google Scholar 

  • Muraro A, Agache I, Clark A et al (2014a) European Academy of Allergy and Clinical Immunology. EAACI food allergy and anaphylaxis guidelines: managing patients with food allergy in the community. Allergy 69:1046–1057

    CAS  PubMed  Google Scholar 

  • Muraro A, Werfel T, Hoffmann-Sommergruber K et al (2014b) EAACI Food Allergy and Anaphylaxis Guidelines Group. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy 69:1008–1025

    CAS  PubMed  Google Scholar 

  • Muraro A, Roberts G, Halken S et al (2018) EAACI guidelines on allergen immunotherapy: executive statement. Allergy 73:739–743

    CAS  PubMed  Google Scholar 

  • Nakajima-Adachi H, Shibahara K, Fujimura Y et al (2017) Critical role of intestinal interleukin-4 modulating regulatory T cells for desensitization, tolerance, and inflammation of food allergy. PLoS One 12:e0172795

    PubMed  PubMed Central  Google Scholar 

  • Netting MJ, Campbell DE, Koplin JJ et al (2017) An Australian Consensus on Infant Feeding Guidelines to Prevent Food Allergy: outcomes From the Australian Infant Feeding Summit. J Allergy Clin Immunol Pract 5:1617–1624

    PubMed  Google Scholar 

  • Nicklaus S, Divaret-Chauveau A, Chardon ML et al (2019) The protective effect of cheese consumption at 18 months on allergic diseases in the first 6 years. Allergy 74:788–798

    PubMed  Google Scholar 

  • Ohsaki A, Venturelli N, Buccigrosso TM et al (2018) Maternal IgG immune complexes induce food allergen-specific tolerance in offspring. J Exp Med 215:91–113

    PubMed  PubMed Central  Google Scholar 

  • Ontiveros N, Valdez-Meza EE, Vergara-Jiménez MJ et al (2016) Parent-reported prevalence of food allergy in Mexican schoolchildren: a population-based study. Allergol Immunopathol 44:563–570

    CAS  Google Scholar 

  • Pajno GB, Fernandez-Rivas M, Arasi S et al (2018) EAACI Allergen Immunotherapy Guidelines Group. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 73:799–815

    CAS  PubMed  Google Scholar 

  • Panjari M, Koplin JJ, Dharmage SC et al (2016) Nut allergy prevalence and differences between Asian-born children and Australian-born children of Asian descent: a state-wide survey of children at primary school entry in Victoria, Australia. Clin Exp Allergy 46:602–609

    CAS  PubMed  Google Scholar 

  • Pastor-Vargas C, Maroto AS, Díaz-Perales A et al (2016) Detection of major food allergens in amniotic fluid: initial allergenic encounter during pregnancy. Pediatr Allergy Immunol 27:716–720

    PubMed  Google Scholar 

  • Platts-Mills TAE (2015) The Allergy Epidemics: 1870–2010. J Allergy Clin Immunol 136:3–13

    PubMed  PubMed Central  Google Scholar 

  • Platts-Mills T, Schuyler AJ, Hoyt AEW et al (2015) Delayed anaphylaxis involving IgE to galactose-alpha-1,3-galactose. Curr Allergy Asthma Rep 15:512

    PubMed Central  Google Scholar 

  • Platts-Mills TAE, Schuyler AJ, Erwin EA et al (2016) IgE in the diagnosis and treatment of allergic disease. Allergy Clin Immunol 137:1662–1670

    CAS  Google Scholar 

  • Pomés A, Davies JM, Gadermaier G et al (2018) WHO/IUIS Allergen Nomenclature: providing a common language. Mol Immunol 100:3–13

    PubMed  PubMed Central  Google Scholar 

  • Popescu FD (2015) Cross-reactivity between aeroallergens and food allergens. World J Methodol 5:31–50

    PubMed  PubMed Central  Google Scholar 

  • Renz H, Allen KJ, Sicherer SH et al (2018) Food allergy. Nat Rev Dis Primers 4:17098

    PubMed  Google Scholar 

  • Ruiter B, Shreffler WG (2012) Innate immunostimulatory properties of allergens and their relevance to food allergy. Semin Immunopathol 34:617–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath V, Tupa D, Graham MT et al (2017) Deciphering the black box of food allergy mechanisms. Ann Allergy Asthma Immunol 118:21–27

    PubMed  PubMed Central  Google Scholar 

  • Sampson HA, O’Mahony L, Burks AW et al (2018) Mechanisms of food allergy. J Allergy Clin Immunol 141:11–19

    CAS  PubMed  Google Scholar 

  • Santos AF, Lack G (2016) Basophil activation test: food challenge in a test tube or specialist research tool? Clin Transl Allergy 6:10

    PubMed  PubMed Central  Google Scholar 

  • Santos AF, Shreffler WG (2017) Road map for the clinical application of the basophil activation test in food allergy. Clin Exp Allergy 47:1115–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schussler E, Sobel J, Hsu J et al (2017) Workgroup report by the Joint Task Force Involving American Academy of Allergy, Asthma and Immunology (AAAAI); Food Allergy, Anaphylaxis, Dermatology and Drug Allergy (FADDA) (Adverse Reactions to Foods Committee and Adverse Reactions to Drugs, Biologicals, and Latex Committee); and the Centers for disease control and prevention botulism clinical treatment guidelines workgroup-allergic reactions to botulinum antitoxin: a systematic review. Clin Infect Dis 66(suppl 1):S65–S72

    PubMed  PubMed Central  Google Scholar 

  • Scott-Taylor TH, Axinia SC, Amin S et al (2018) Immunoglobulin G: structure and functional implications of different subclass modifications in initiation and resolution of allergy. Immun Inflamm Dis 6:13–33

    CAS  PubMed  Google Scholar 

  • Shik D, Tomar S, Lee JB et al (2017) IL-9—producing cells in the development of IgE-mediated food allergy. Semin Immunopathol 39:69–77

    CAS  PubMed  Google Scholar 

  • Shroba J, Rath N, Barnes C (2019) Possible role of environmental factors in the development of food allergies. Clin Rev Allergy Immunol 57:303–311

    CAS  PubMed  Google Scholar 

  • Sicherer SH, Leung DY (2014) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2013. J Allergy Clin Immunol 133:324–334

    CAS  PubMed  Google Scholar 

  • Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133:291–307

    CAS  PubMed  Google Scholar 

  • Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141:41–58

    CAS  PubMed  Google Scholar 

  • Simons FER, Sanchez-Borges M, Thong BY et al (2015) 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organization J 8:32

    Google Scholar 

  • Sirufo MM, De Martinis M, Ginaldi L (2018) Omalizumab an effective and safe alternative therapy in severe refractory atopic dermatitis: a case report. Medicine 97:e10897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirufo MM, Ginaldi L, De Martinis M (2019) Asthma, urticaria and omalizumab in children: reflections from a clinical case report. Front Pediatr 7:213

    PubMed  PubMed Central  Google Scholar 

  • Sirufo MM, Suppa M, Ginaldi L et al (2020) Does allergy break bones? Osteoporosis and its connection to allergy. Int J Mol Sci 21:E712

    PubMed  Google Scholar 

  • Skypala IJ, Venter C, Meyer R et al (2015) Allergy-focussed diet history task force of the European Academy of Allergy and Clinical Immunology. Clin Transl Allergy 5:7

    PubMed  PubMed Central  Google Scholar 

  • Suaini NHA, Zhang Y, Vuillermin PJ et al (2015) Immune modulation by vitamin D and its relevance to food allergy. Nutrients 7:6088–6108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Matsuo H, Chinuki Y et al (2012) Recombinant high molecular weight-glutenin subunit-specific IgE detection is useful in identifying wheat-dependent exercise-induced anaphylaxis complementary to recombinant omega-5 gliadin-specific IgE test. Clin Exp Allergy 42:1293–1298

    CAS  PubMed  Google Scholar 

  • Tiainen JM, Nuutinen OM, Kalavainen MP (1995) Diet and nutritional status in children with cow’s milk allergy. Eur J Clin Nutr 49:605–612

    CAS  PubMed  Google Scholar 

  • Tordesillas L, Mondoulet L, Blazquez AB et al (2017) Epicutaneous immunotherapy induces gastrointestinal LAP + Tregs and prevents food-induced anaphylaxis. J Allergy Clin Immunol 139:189–201

    CAS  PubMed  Google Scholar 

  • Valenta R, Hochwallner H, Linhart B et al (2015) Food allergies: the basics. Gastroenterology 148:1120–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Ortiz M, Turner PJ (2016) Improving the safety of oral immunotherapy for food allergy. Pediatr Allergy Immunol 27:117–125

    PubMed  Google Scholar 

  • Virkud YV, Vickery BP (2012) Advances in immunotherapy for food allergy. Discov Med 14:159–165

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Sampson HA (2011) Food allergy. J Clin Invest 121:827–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waserman S, Bégin P, Watson W (2018) IgE-mediated food allergy. Allergy Asthma Clin Immunol 14(Suppl 2):55

    PubMed  PubMed Central  Google Scholar 

  • Werfel T, Asero R, Ballmer-Weber BK et al (2015) Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 70:1079–1090

    CAS  PubMed  Google Scholar 

  • Wershil BK, Butzner D, Sabra A et al (2002) Allergy and immunologic disease: working Group Report of the First World Congress of pediatric gastroenterology, hepatology, and nutrition. J Pediatr Gastroenterol Nutr 35(Suppl 2):S74–S77

    PubMed  Google Scholar 

  • Wesemann DR, Nagler CR (2016) Commensal bacteria, timing and barrier function in the context of allergic disease. Immunity 44:728–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodfolk JA, Commins SP, Schuyler AJ et al (2015) Allergens, sources, particles, and molecules: why do we make IgE responses? Allergol Int 64:295–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LC (2012) Intestinal epithelial barrier dysfunction in food hypersensitivity. J Allergy 2012:596081

    Google Scholar 

  • Yu W, Hussey Freeland DM et al (2016) Nadeau KC. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 16:751–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Kong H, Zeng X et al (2014) Subsets of regulatory T cells and their roles in allergy. J Transl Med 12:125

    PubMed  PubMed Central  Google Scholar 

  • Zhang GQ, Hu HJ, Liu CY et al (2015) Probiotics for prevention of atopy and food hypersensitivity in early childhood. A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine 95:e2562

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo De Martinis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Martinis, M., Sirufo, M.M., Viscido, A. et al. Food Allergy Insights: A Changing Landscape. Arch. Immunol. Ther. Exp. 68, 8 (2020). https://doi.org/10.1007/s00005-020-00574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-020-00574-6

Keywords

Navigation