Skip to main content
Log in

Yeast chromatin remodeling complexes and their roles in transcription

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The nucleosome is a small unit of chromatin, which is dynamic in eukaryotes. Chromatin conformation and post-translational modifications affect nucleosome dynamics under certain conditions, playing an important role in the epigenetic regulation of transcription, replication and reprogramming. The Snf2 remodeling family is one of the crucial remodeling complexes that tightly regulate chromatin structure and affect nucleosome dynamics. This family alters nucleosome positioning, exchanges histone variants, and assembles and disassembles nucleosomes at certain locations. Moreover, the Snf2 family, in conjunction with other co-factors, regulates gene expression in Saccharomyces cerevisiae. Here we first review recent findings on the Snf2 family remodeling complexes and then use some examples to illustrate the cooperation between different members of Snf2 family, and the cooperation between Snf2 family and other co-factors in gene regulation especially during transcription initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH (2014) Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast. J Biol Chem 289:14981–14995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Shen X (2007) INO80 subfamily of chromatin remodeling complexes. Mutat Res 618:18–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker PB, Workman JL (2013) Nucleosome remodeling and epigenetics. Cold Spring Harbor Perspect Biol 5:a017905

    Google Scholar 

  • Biggar SR, Crabtree GR (1999) Continuous and widespread roles for the Swi-Snf complex in transcription. EMBO J 18:2254–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas D, Dutta-Biswas R, Stillman DJ (2007) Chd1 and yFACT act in opposition in regulating transcription. Mol Cell Biol 27:6279–6287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brahma S, Udugama MI, Kim J, Hada A, Bhardwaj SK, Hailu SG, Lee TH, Bartholomew B (2017) INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat Commun 8:15616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns BR (2009) The logic of chromatin architecture and remodelling at promoters. Nature 461:193–198

    CAS  PubMed  Google Scholar 

  • Carlson M, Osmond BC, Neigeborn L, Botstein D (1984) A suppressor of snf1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107:19–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    CAS  PubMed  Google Scholar 

  • Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Bio 18:407–422

    CAS  Google Scholar 

  • Clapier CR, Kasten MM, Parnell TJ, Viswanathan R, Szerlong H, Sirinakis G, Zhang Y, Cairns BR (2016) Regulation of DNA translocation efficiency within the chromatin remodeler RSC/Sth1 potentiates nucleosome sliding and ejection. Mol Cell 62:453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove MS, Wolberger C (2005) How does the histone code work? Biochem Cell Biol 83:468–476

    CAS  PubMed  Google Scholar 

  • Daignan-Fornier B, Fink GR (1992) Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci USA 89:6746–6750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon Y, Cote J (2004) The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev 14:147–154

    CAS  PubMed  Google Scholar 

  • Farnung L, Vos SM, Wigge C, Cramer P (2017) Nucleosome-Chd1 structure and implications for chromatin remodelling. Nature 550:539–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887–2905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ford J, Odeyale O, Eskandar A, Kouba N, Shen CH (2007) A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun 361:974–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ford J, Odeyale O, Shen CH (2008) Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation. Biochem Biophys Res Commun 373:602–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhold CB, Gasser SM (2014) INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol 24:619–631

    CAS  PubMed  Google Scholar 

  • Gerhold CB, Hauer MH, Gasser SM (2015) INO80-C and SWR-C: guardians of the genome. J Mol Biol 427:637–651

    CAS  PubMed  Google Scholar 

  • Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433

    CAS  PubMed  Google Scholar 

  • Gregory PD, Schmid A, Zavari M, Munsterkotter M, Horz W (1999) Chromatin remodelling at the PHO8 promoter requires SWI-SNF and SAGA at a step subsequent to activator binding. EMBO J 18:6407–6414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grune T, Brzeski J, Eberharter A, Clapier CR, Corona DF, Becker PB, Muller CW (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12:449–460

    PubMed  Google Scholar 

  • Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384

    PubMed  PubMed Central  Google Scholar 

  • Hall JA, Georgel PT (2007) CHD proteins: a diverse family with strong ties. Biochem Cell Biol 85:463–476

    CAS  PubMed  Google Scholar 

  • Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137:445–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize Swi/Snf binding to promoter nucleosomes. Cell 104:817–827

    CAS  PubMed  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111:369–379

    CAS  PubMed  Google Scholar 

  • Henikoff S, Smith MM (2015) Histone variants and epigenetics. CSH Perspect Biol 7:a019364

    Google Scholar 

  • Hota SK, Bhardwaj SK, Deindl S, Lin YC, Zhuang XW, Bartholomew B (2013) Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat Struct Mol Biol 20:222–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ioshikhes IP, Albert I, Zanton SJ, Pugh BF (2006) Nucleosome positions predicted through comparative genomics. Nat Genet 38:1210–1215

    CAS  PubMed  Google Scholar 

  • Jiang CZ, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B (2004) Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23:2092–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasten MM, Clapier CR, Cairns BR (2011) SnapShot: Chromatin remodeling: SWI/SNF. Cell 144:310.e1. https://doi.org/10.1016/j.cell.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  • Kent NA, Karabetsou N, Politis PK, Mellor J (2001) In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 15:619–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, McLaughlin N, Lindstrom K, Tsukiyama T, Clark DJ (2006) Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent, SWI/SNF-dependent mobilization of nucleosomes over the entire gene. Mol Cell Biol 26:8607–8622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kingston RE, Tamkun JW (2014) Transcriptional regulation by trithorax-group proteins. CSH Perspect Biol 6:a019349

    Google Scholar 

  • Koehler RN, Rachfall N, Rolfes RJ (2007) Activation of the ADE genes requires the chromatin remodeling complexes SAGA and SWI/SNF. Eukaryot Cell 6:1474–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Krietenstein N, Wal M, Watanabe S, Park B, Peterson CL, Pugh BF, Korber P (2016) Genomic nucleosome organization reconstituted with pure proteins. Cell 167:709–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lans H, Marteijn JA, Vermeulen W (2012) ATP-dependent chromatin remodeling in the DNA-damage response. Epigenet Chromatin 5:4

    CAS  Google Scholar 

  • Lariviere L, Seizl M, Cramer P (2012) A structural perspective on mediator function. Curr Opin Cell Biol 24:305–313

    CAS  PubMed  Google Scholar 

  • Lee Y, Park D, Iyer VR (2017) The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes. Nucleic Acids Res 45:7180–7190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    CAS  PubMed  Google Scholar 

  • Liu X, Li M, Xia X, Li X, Chen Z (2017) Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544:440–445

    CAS  PubMed  Google Scholar 

  • Lorch Y, Kornberg RD (2015) Chromatin-remodeling and the initiation of transcription. Q Rev Biophys 48:465–470

    CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  • Lusser A, Urwin DL, Kadonaga JT (2005) Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12:160–166

    CAS  PubMed  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891

    CAS  PubMed  Google Scholar 

  • Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618:30–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martens JA, Winston F (2002) Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev 16:2231–2236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martens JA, Wu PY, Winston F (2005) Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 19:2695–2704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O (2015) SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 10:145–171

    CAS  PubMed  Google Scholar 

  • McConnell AD, Gelbart ME, Tsukiyama T (2004) Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. Mol Cell Biol 24:2605–2613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor J, Morillon A (2004) ISWI complexes in Saccharomyces cerevisiae. Bioch Biophys Acta 1677:100–112

    CAS  Google Scholar 

  • Menezes RA, Amaral C, Delaunay A, Toledano M, Rodrigues-Pousada C (2004) Yap8p activation in Saccharomyces cerevisiae under arsenic conditions. FEBS Lett 566:141–146

    CAS  PubMed  Google Scholar 

  • Menezes RA, Pimentel C, Silva AR, Amaral C, Merhej J, Devaux F, Rodrigues-Pousada C (2017) Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate. Bioch Biophys Acta Gene Regul Mech 1860:472–481

    CAS  Google Scholar 

  • Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348

    CAS  PubMed  Google Scholar 

  • Mohanty B, Helder S, Silva APG, Mackay JP, Ryan DP (2016) The chromatin remodelling protein CHD1 contains a previously unrecognised C-terminal helical domain. J Mol Biol 428:4298–4314

    CAS  PubMed  Google Scholar 

  • Morillon A, Karabetsou N, O'Sullivan J, Kent N, Proudfoot N, Mellor J (2003) Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115:425–435

    CAS  PubMed  Google Scholar 

  • Morrison AJ (2017) Genome maintenance functions of the INO80 chromatin remodeller. Philos Trans R Soc B 372:1731

    Google Scholar 

  • Mueller-Planitz F, Klinker H, Ludwigsen J, Becker PB (2013) The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat Struct Mol Biol 20:82–U107

    CAS  PubMed  Google Scholar 

  • Nodelman IM, Horvath KC, Levendosky RF, Winger J, Ren R, Patel A, Li M, Wang MD, Roberts E, Bowman GD (2016) The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nucleic Acids Res 44:7580–7591

    PubMed  PubMed Central  Google Scholar 

  • Ocampo J, Chereji RV, Eriksson PR, Clark DJ (2016) The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res 44:4625–4635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL (2011) Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parnell EJ, Stillman DJ (2019) Multiple negative regulators restrict recruitment of the SWI/SNF chromatin remodeler to the HO promoter in Saccharomyces cerevisiae. Genetics 212:1181–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583

    CAS  PubMed  Google Scholar 

  • Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD (2005) Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123:233–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raisner RM, Madhani HD (2006) Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr Opin Genet Dev 16:119–124

    CAS  PubMed  Google Scholar 

  • Ramachandran S, Zentner GE, Henikoff S (2015) Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res 25:381–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ, Winston F (2012) Chromatin and transcription in yeast. Genetics 190:351–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawal Y, Chereji RV, Qiu HF, Ananthakrishnan S, Govind CK, Clark DJ, Hinnebusch AG (2018) SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Gene Dev 32:695–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhee HS, Bataille AR, Zhang L, Pugh BF (2014) Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159:1377–1388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CW, Orkin SH (2004) The SWI/SNF complex–chromatin and cancer. Nat Rev Cancer 4:133–142

    CAS  PubMed  Google Scholar 

  • Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T (2011) The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 30:2596–2609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544

    CAS  PubMed  Google Scholar 

  • Shetty A, Lopes JM (2010) Derepression of INO1 transcription requires cooperation between the Ino2p-Ino4p heterodimer and Cbf1p and recruitment of the ISW2 chromatin-remodeling complex. Eukaryot Cell 9:1845–1855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M, Takahashi K, Lamb TM, Shindo H, Mitchell AP (2003) Yeast Ume6p repressor permits activator binding but restricts TBP binding at the HOP1 promoter. Nucleic Acids Res 31:3033–3037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    CAS  PubMed  Google Scholar 

  • Smolle MM (2018) Chd1 bends over backward to remodel. Nat Struct Mol Biol 25:2–3

    CAS  PubMed  Google Scholar 

  • Strathern JN, Klar AJ, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192

    CAS  PubMed  Google Scholar 

  • Sudarsanam P, Cao Y, Wu L, Laurent BC, Winston F (1999) The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J 18:3101–3106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama M, Nikawa J (2001) The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology. J Bacteriol 183:4985–4993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaramoorthy R (2019) Nucleosome remodelling: structural insights into ATP-dependent remodelling enzymes. Essays Biochem 63:45–58

    PubMed  Google Scholar 

  • Sundaramoorthy R, Hughes AL, El-Mkami H, Norman DG, Ferreira H, Owen-Hughes T (2018) Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. eLife 7:35720

    Google Scholar 

  • Syntichaki P, Topalidou I, Thireos G (2000) The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 404:414–417

    CAS  PubMed  Google Scholar 

  • Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18:1084–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi A, Haas C, Herzog F, Gilmozzi A, Berninghausen O, Ungewickell C, Gerhold CB, Lakomek K, Aebersold R, Beckmann R, Hopfner KP (2013) Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154:1207–1219

    CAS  PubMed  Google Scholar 

  • Tsukiyama T, Daniel C, Tamkun J, Wu C (1995) ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026

    CAS  PubMed  Google Scholar 

  • Udugama M, Sabri A, Bartholomew B (2011) The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol Cell Biol 31:662–673

    CAS  PubMed  Google Scholar 

  • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602

    CAS  PubMed  Google Scholar 

  • Vary JC, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B, Tsukiyama T (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23:80–91

    CAS  PubMed  Google Scholar 

  • Voutsina A, Fragiadakis GS, Gkouskou K, Alexandraki D (2019) Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 65:799–816

    CAS  PubMed  Google Scholar 

  • Watanabe S, Tan D, Lakshminarasimhan M, Washburn MP, Hong EJ, Walz T, Peterson CL (2015) Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C. Nat Commun 6:7108

    CAS  PubMed  Google Scholar 

  • Watson JD, Gann A, Bt A, Levine M, Bs P, Losick R (2014) Molecular biology of the gene, 7th edn. CSHL Press, Cold Spring Harbor

    Google Scholar 

  • Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450:1031–U1033

    CAS  PubMed  Google Scholar 

  • Xella B, Goding C, Agricola E, Di Mauro E, Caserta M (2006) The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol 59:1531–1541

    CAS  PubMed  Google Scholar 

  • Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–453

    CAS  PubMed  Google Scholar 

  • Yan L, Chen Z (2020) A unifying mechanism of DNA translocation underlying chromatin remodeling. Trends Biochem Sci 45:217–227

    CAS  PubMed  Google Scholar 

  • Ye Y, Wu H, Chen K, Clapier CR, Verma N, Zhang W, Deng H, Cairns BR, Gao N, Chen Z (2019) Structure of the RSC complex bound to the nucleosome. Science 366:838–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Kirouac M, Zhu N, Hinnebusch AG, Rolfes RJ (1997) Evidence that complex formation by Bas1p and Bas2p (Pho2p) unmasks the activation function of Bas1p in an adenine-repressible step of ADE gene transcription. Mol Cell Biol 17:3272–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123:219–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang X, Xin J, Ding Z, Liu S, Fang Q, Yang N, Xu RM, Cai G (2018) Architecture of SWI/SNF chromatin remodeling complex. Protein Cell 9:1045–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou CY, Johnson SL, Lee LJ, Longhurst AD, Beckwith SL, Johnson MJ, Morrison AJ, Narlikar GJ (2018) The yeast INO80 complex operates as a tunable DNA length-sensitive switch to regulate nucleosome sliding. Mol Cell 69:677–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer C, Fabre E (2019) Chromatin mobility upon DNA damage: state of the art and remaining questions. Curr Genet 65:1–9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank laboratory members for discussion and Michelle Hanna for proofreading. This work was supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant RGPIN-2014-04580 to WX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiao.

Additional information

Communicated by M. Kupiec.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, A., Du, Y. & Xiao, W. Yeast chromatin remodeling complexes and their roles in transcription. Curr Genet 66, 657–670 (2020). https://doi.org/10.1007/s00294-020-01072-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-020-01072-0

Keywords

Navigation