Skip to main content
Log in

Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

We measured the grazing and growth response of the mixotrophic chrysomonad flagellate Poterioochromonas malhamensis on four closely related picocyanobacterial strains isolated from subalpine lakes in central Europe. The picocyanobacteria represented different pigment types (phycoerythrin-rich, PE, and phycocyanin-rich, PC) and phylogenetic clusters. The grazing experiments were conducted with laboratory cultures acclimated to 10 µmol photon/m2/sec (low light, LL) and 100 µmol photon/m2/sec (moderate light, ML), either in the dark or at four different irradiances ranging from low (6 µmol photon/m2/sec) to high (1,500 µmol photon/m2/sec) light intensity. Poterioochromonas malhamensis preferred the larger, green PC-rich picocyanobacteria to the smaller, red PE-rich picocyanobacterial, and heterotrophic bacteria. The feeding and growth rates of P. malhamensis were sensitive to the actual light conditions during the experiments; the flagellate performed relatively better in the dark and at LL conditions than at high light intensity. In summary, our results found strain-specific ingestion and growth rates of the flagellate; an effect of the preculturing conditions, and, unexpectedly, a direct adverse effect of high light levels. We conclude that this flagellate may avoid exposure to high surface light intensities commonly encountered in temperate lakes during the summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Allen, M.M. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol.4, 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, A., Falk, S., Samuelsson, G., and Hagström, Å. 1989. Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microb. Ecol.17, 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Beisser, D., Graupner, N., Bock, C., Wodniok, S., Grossmann, L., Vos, M., Sures, B., Rahmann, S., and Boenigk, J. 2017. Comprehensive transcriptome analysis provides new insights into nutritional strategies and phylogenetic relationships of chrysophytes. PeerJ5, e2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, D.F. and Kalff, J. 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr.32, 277–284.

    Article  CAS  Google Scholar 

  • Boenigk, J., Matz, C., Jürgens, K., and Arndt, H. 2001a. Confusing selective feeding with differential digestion and bacterivorous nanoflagellates. J. Eukaryot. Microb.48, 425–432.

    Article  CAS  Google Scholar 

  • Boenigk, J., Matz, C., Jürgens, K., and Arndt, H. 2001b. The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb. Ecol.42, 168–176.

    Article  PubMed  Google Scholar 

  • Boenigk, J., Matz, C., Jürgens, K., and Arndt, H. 2002. Food concentration dependent regulation of food selectivity of interception feeding bacterivorous nanoflagellates. Aquat. Microb. Ecol.27, 195–202.

    Article  Google Scholar 

  • Boenigk, J., Pfandl, K., Stadler, P., and Chatzinotas, A. 2005. High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ. Microbiol.7, 685–697.

    Article  CAS  PubMed  Google Scholar 

  • Boenigk, J., Stadler, P., Wiedlroither, A., and Hahn, M.W. 2004. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl. Environ. Microbiol.70, 5787–5793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callieri, C. 2017. Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett.364, fnx229.

    Article  CAS  Google Scholar 

  • Callieri, C., Amalfitano, S., Corno, G., and Bertoni, R. 2016. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol. Ecol.92, fiw154.

    Article  CAS  PubMed  Google Scholar 

  • Callieri, C., Coci, M., Corno, G., Macek, M., Modenutti, B., Balseiro, E., and Bertoni, R. 2013. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol. Ecol.85, 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Callieri, C., Moro, S., Caravati, E., Crosbie, N.D., and Weisse, T. 2005. Strain-specific photosynthetic response of freshwater pico-cyanobacteria. Verh. Internat. Verein. Limnol.29, 777–782.

    CAS  Google Scholar 

  • Callieri, C. and Piscia, R. 2002. Photosynthetic efficiency and sea-sonality of autotrophic picoplankton in Lago Maggiore after its recovery. Freshw. Biol.47, 941–956.

    Article  Google Scholar 

  • Christoffersen, K. 1994. Variations of feeding activities of heterotrophic nanoflagellates on picoplankton. Mar. Microb. Food Web8, 11–123.

    Google Scholar 

  • Crosbie, N.D., Pöckl, M., and Weisse, T. 2003a. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microb.69, 5716–5721.

    Article  CAS  Google Scholar 

  • Crosbie, N.D., Pöckl, M., and Weisse, T. 2003b. Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J. Microbiol. Methods55, 361–370.

    Article  CAS  PubMed  Google Scholar 

  • Crosbie, N.D., Teubner, K., and Weisse, T. 2003c. Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat. Microb. Ecol.33, 53–66.

    Article  Google Scholar 

  • Elser, J., Kyle, M., Makino, W., Yoshida, T., and Urabe, J. 2003. Ecological stoichiometry in the microbial food web: a test of the light: nutrient hypothesis. Aquat. Microb. Ecol.31, 49–65.

    Article  Google Scholar 

  • Ernst, A. 1991. Cyanobacterial picoplankton from Lake Constance. I. Isolation by fluorescence characteristics. J. Plankton Res.13, 1307–1312.

    Article  Google Scholar 

  • Fogg, G.E. 1986. Picoplankton. Proc. R. Soc. Lond.228, 1–30.

    Google Scholar 

  • Gervais, F., Padisák, J., and Koschel, R. 1997. Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? J. Plankton Res.19, 771–781.

    Article  Google Scholar 

  • Hahn, M.W. and Höfle, M.G. 1998. Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures. Appl. Environ. Microbiol.64, 1910–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M.W. and Höfle, M.G. 1999. Flagellate predation on a bacterial model community: Interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol.65, 4863–4872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M.W. and Höfle, M.G. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol.35, 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Holen, D.A. and Boraas, M. 1991. The feeding behavior of Spumella sp. as a function of particle size: Implications for bacterial size in pelagic systems. Hydrobiologia220, 73–88.

    Article  Google Scholar 

  • Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol.91, 293–320.

    Article  Google Scholar 

  • Ivanikova, N.V., Popels, L.C., McKay, R.M.L., and Bullerjahn, G.S. 2007. Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl. Environ. Microbiol.73, 4055–4065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, J. 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev’s selectivity index. Oecologia14, 413–417.

    Article  PubMed  Google Scholar 

  • John, E.H. and Davidson, K. 2001. Prey selectivity and the influence of prey carbon: nitrogen ratio on microflagellate grazing. J. Exp. Mar. Biol. Ecol.260, 93–111.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R.I. 2000. Mixotrophy in planktonic protists: an overview. Freshw. Biol.45, 219–226.

    Article  Google Scholar 

  • Jürgens, K. and Massana, R. 2008. Protist Grazing on Marine Bacterioplankon. In Kirchman, D.L. (eds.) Microbial Ecology of the Oceans. 2nd ed., pp. 383–441. John Wiley & Sons, Inc.

  • Jürgens, K. and Šimek, K. 2000. Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrichous ciliate. Aquat. Microb. Ecol.22, 57–68.

    Article  Google Scholar 

  • Li, J., Fenton, A., Kettley, L., Roberts, P., and Montagnes, D.J.S. 2013. Reconsidering the importance of the past in predator-prey models: both numerical and functional responses depend on delayed prey densities. Proc. R. Soc. B.280, 20191389.

    Article  Google Scholar 

  • Lie, A.A., Liu, Z., Terrado, R., Tatters, A.O., Heidelberg, K.B., and Caron, D.A. 2017. Effect of light and prey availability on gene expression of the mixotrophic chrysophyte, Ochromonas sp. BMC Genomics18, 163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinsky-Rushanksy, N., Berman, T., Berner, T., Yacobi, Y.Z., and Dubinsky, Z. 2002. Physiological characteristics of picophytoplankton, isolated from Lake Kinneret: responses to light and temperature. J. Plankton Res.24, 1173–1183.

    Article  Google Scholar 

  • Meunier, C.L., Hantzsche, F.M., Cunha-Dupont, A.Ö., Haafke, J., Oppermann, B., Malzahn, A.M., and Boersma, M. 2012. Intraspecific selectivity, compensatory feeding and flexible homeostasis in the phagotrophic flagellate Oxyrrhis marina: three ways to handle food quality fluctuations. Hydrobiologia680, 53–62.

    Article  CAS  Google Scholar 

  • Montagnes, D.J.S., Barbosa, A.B., Boenigk, J., Davidson, K., Jürgens, K., Macek, M., Parry, J.D., Roberts, E.C., and Simek, K. 2008. Selective feeding behaviour of free-living protists: avenues for continued study. Aquat. Microb. Ecol.53, 83–98.

    Article  Google Scholar 

  • Moreno, A.R. and Martiny, A.C. 2018. Ecological stoichiometry of ocean plankton. Ann. Rev. Mar. Sci.10, 43–69.

    Article  PubMed  Google Scholar 

  • Moser, M., Callieri, C., and Weisse, T. 2009. Photosynthetic and growth response of freshwater picocyanobacteria are strain-specific and sensitive to photoacclimation. J. Plankton Res.31, 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Müller, H. 1996. Selective feeding of a freshwater chrysomonad, Paraphysomonas sp., on chroococcoid cyanobacteria and nano-flagellates. Archiv. Hydrobiol. Adv. Limnol.48, 63–71.

    Google Scholar 

  • Neale, P.J. and Richerson, P.J. 1987. Photoinhibition and the diurnal variation of phytoplankton photosynthesis-I. Development of a photosynthesis-irradiance model from studies of in situ responses. J. Plankton Res.9, 167–193.

    Article  Google Scholar 

  • Padisák, J. 2003. Phytoplankton. In O’Sullivan, P. and Reynolds, C.S. (eds.), The lakes handbook: limnology and limnetic ecology. vol. 1, pp. 251–308. Blackwell Science Ltd.

  • Pålsson, C. and Daniel, C. 2004. Effects of prey abundance and light intensity on nutrition of a mixotrophic flagellate and its competitive relationship with an obligate heterotroph. Aquat. Microb. Ecol.36, 247–256.

    Article  Google Scholar 

  • Pernthaler, J., Simek, K., Sattler, B., Schwarzenbacher, A., Bobková J., and Psenner, R. 1996. Short-term changes of protozoan control on autotrophic picoplankton in an oligo-mesotrophic lake. J. Plankton Res.18, 443–462.

    Article  Google Scholar 

  • Pestová, D., Macek, M., and Pérez, M.E.M. 2008. Ciliates and their picophytoplankton-feeding activity in a high-altitude warm-monomictic saline lake. Eur. J. Protistol.44, 13–25.

    Article  PubMed  Google Scholar 

  • Ptacnik, R., Gomes, A., Royer, S.J., Berger, S.A., Calbet, A., Nejstgaard, J.C., Gasol, J.M., Isari, S., Moorthi, S.D., Ptacnikova, R., et al. 2016. A light-induced shortcut in the planktonic microbial loop. Sci. Rep.6, 29286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigler, F.H. 1961. The relation between concentration of food and feeding rate of Daphnia magna straus. Can. J. Zool.39, 857–868.

    Article  Google Scholar 

  • Rothhaupt, K.O. 1990. Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnol. Oceanogr.35, 24–32.

    Article  Google Scholar 

  • Rottberger, J., Gruber, A., Boenigk, J., and Kroth, P.G. 2013. Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat. Microb. Ecol.71, 179–191.

    Article  Google Scholar 

  • Sanders, R.W., Porter, K.G., and Caron, D.A. 1990. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microb. Ecol.19, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Scanlan, D.J. and West, N.J. 2002. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol.40, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke, A., Bell, E.M., and Weithoff, G. 2006. Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. J. Plankton Res.28, 991–1001.

    Article  CAS  Google Scholar 

  • Shannon, S.P., Chrzanowski, T.H., and Grover, J.P. 2007. Prey food quality affects flagellate ingestion rates. Microb. Ecol.53, 66–73.

    Article  PubMed  Google Scholar 

  • Šimek, K., Bobková, J., Macek, M., Nedoma, J., and Psenner, R. 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr.40, 1077–1090.

    Article  Google Scholar 

  • Šimek, K., Pernthaler, J., Weinbauer, M.G., Hornák, K., Dolan, J.R., Nedoma, J., Masín, M., and Amann, R. 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol.67, 2723–2733.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer, U., Gaedke, U., and Schweizer, A. 1993. The first decade of oligotrophication of Lake Constance: II. The response of phytoplankton taxonomic composition. Oecologia93, 276–284.

    Article  PubMed  Google Scholar 

  • Sterner, R.W., Clasen, J., Lampert, W., and Weisse, T. 1998. Carbon: phosphorus stoichiometry and food chain production. Ecol. Lett.1, 146–150.

    Article  Google Scholar 

  • Sterner, R.W., Elser, J.J., Fee, E.J., Guildford, S.J., and Chrzanowski, T.H. 1997. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am. Nat.150, 663–684.

    Article  CAS  PubMed  Google Scholar 

  • Stockner, J.G. and Antia, N.J. 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. Aquat. Sci.43, 2472–2503.

    Article  Google Scholar 

  • Suttle, C.A., Chan, A.M., Taylor, W.D., and Harrison, P.J. 1986. Grazing of planktonic diatoms by microflagellates. J. Plankton Res.8, 393–398.

    Article  Google Scholar 

  • Tarao, M., Jezbera, J., and Hahn, M.W. 2009. Involvement of cell surface structures in size-independent grazing resistance of fresh-water Actinobacteria. Appl. Environ. Microbiol.75, 4720–4726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilzer, M.M. 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zeal. J. Mar. Fresh. Res.21, 401–412.

    Article  CAS  Google Scholar 

  • Tilzer, M.M. and Beese, B. 1988. The seasonal productivity cycle of phytoplankton and controlling factors in lake Constance. Swiss J. Hydrol.50, 1–39.

    Article  CAS  Google Scholar 

  • Wacker, A., Piepho, M., Harwood, J.L., Guschina, I.A., and Arts, M.T. 2016. Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species. Front. Plant Sci.7, 264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisse, T. 1988. Dynamics of autotrophic picoplankton in lake Constance. J. Plankton Res.10, 1179–1188.

    Article  Google Scholar 

  • Weisse, T. 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv. Microb. Ecol.13, 327–370.

    Article  Google Scholar 

  • Weisse, T., Anderson, R., Arndt, H., Calbet, A., Hansen, P.J., and Montagnes, D.J.S. 2016. Functional ecology of aquatic phagotrophic protists — concepts, limitations, and perspectives. Eur. J. Protistol.55, 50–74.

    Article  PubMed  Google Scholar 

  • Weisse, T. and Bergkemper, V. 2018. Rapid detection and quantification of the potentially toxic cyanobacterium Planktothrix rubescens by in-vivo fluorometry and flow cytometry. Water Res.138, 234–240.

    Article  CAS  PubMed  Google Scholar 

  • Weisse, T., Müller, H., Pinto-Coelho, R.M., Schweizer, A., Springmann, D., and Baldringer, G. 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol. Oceanogr.35, 781–794.

    Article  Google Scholar 

  • Zwirglmaier, K., Spence, E., Zubkov, M.V., Scanlan, D.J., and Mann, N.H. 2009. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Environ. Microbiol.11, 1767–1776.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Annette Ernst, Nicholas Crosbie, and Peter Stadler for isolating and maintaining the picocyanobacterial cultures used in this study, and Martin Hahn for providing the axenic P. malhamensis strain DS. Cristiana Callieri, CNR-ISE Pallanza, Italy, provided the facilities to measure the growth and grazing rates along a light gradient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Weisse.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisse, T., Moser, M. Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis. J Microbiol. 58, 268–278 (2020). https://doi.org/10.1007/s12275-020-9567-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9567-8

Keywords

Navigation