Skip to main content
Log in

A three-dimensional fluid-solid coupled numerical modeling of the barrier leakage below the excavation surface due to dewatering

Modélisation numérique tridimensionnelle couplée fluide-solide de fuites sous barrière sous la surface de fouille en raison du dénoyage

Un modelado numérico tridimensional acoplado fluido-sólido de filtración a través de una barrera debajo de la superficie de la excavación como consecuencia del drenaje

降水引起的基坑开挖面下方止水帷幕渗漏的三维流固耦合数值模拟

Modelagem numérica tridimensional acoplada fluido-sólido do vazamento de barreira abaixo da superfície da escavação devido à drenagem

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Waterproof curtains are used as barriers to block groundwater during deep excavations; however, in practice, barrier leakage occurs frequently. This paper establishes a three-dimensional (3D) fluid-solid-coupled finite element model to analyse the effect of barrier leakage below the excavation surface. Uniform and local barrier leakages in a confined aquifer are simulated for a constant flow rate and fixed drawdown. The simulated results show that barrier leakage causes a variation in the flow direction, drawdown of the groundwater head outside of excavation, and significant additional deformation in the longitudinal direction. The factors influencing drawdown and ground settlement induced by leakage include leakage location, leakage area, barrier penetration depth, pumping-well penetration depth, and aquifer anisotropy. In addition, the simulation results show that the drawdown-time curves under various leakage conditions have similar patterns.

Résumé

Des parois étanches sont utilisées comme barrières pour bloquer les eaux souterraines lors de fouilles profondes; cependant, dans la pratique, des fuites au travers les barrières se produisent fréquemment. Cet article établit un modèle tri-dimensionnel (3D) couplé fluide-solide à éléments finis pour analyser l’effet des fuites de barrière sous la surface de la fouille. Des fuites uniformes et locales de barrière dans un aquifère captif sont simulées pour un débit constant et un rabattement fixe. Les résultats des simulations montrent que les fuites de barrière provoquent un changement de direction d’écoulement, un rabattement de la charge hydraulique en dehors de la fouille, et une déformation supplémentaire significative dans la direction longitudinale. Les facteurs influençant le rabattement et le tassement du terrain induits par les fuites comprennent la localisation des fuites, la surface de la zone des fuites, la profondeur de pénétration de la barrière, la profondeur de pénétration du puits de pompage, et l’anisotropie de l’aquifère. En outre, les résultats des simulations montrent que les courbes de rabattement en fonction du temps pour diverses conditions de fuite ont des comportements similaires.

Resumen

Las cortinas impermeables se utilizan como barreras para aislar las aguas subterráneas durante las excavaciones profundas; sin embargo, en la práctica, las filtraciones a través de la barrera se producen con frecuencia. En el presente documento se establece un modelo tridimensional (3D) de elementos finitos acoplados al fluido y al sólido para analizar el efecto de la filtración en la barrera bajo la superficie de la excavación. Se simulan filtraciones en barreras uniformes y locales en un acuífero confinado para un caudal constante y una depresión fija del nivel de agua. Los resultados simulados muestran que las filtraciones en la barrera causan una variación en la dirección del flujo, el descenso de la altura del agua subterránea fuera de la excavación y una deformación adicional significativa en la dirección longitudinal. Entre los factores que influyen en el descenso del nivel y el asentamiento del suelo inducidos por las filtraciones figuran la ubicación y zona de fuga, la profundidad de penetración en la barrera, la profundidad de penetración del pozo de bombeo y la anisotropía del acuífero. Además, los resultados de la simulación muestran que las curvas de tiempo de descenso del nivel del agua en diversas condiciones de filtración tienen pautas similares.

摘要

止水帷幕通常用作深基坑开挖过程中阻挡地下水的屏障。然而,在实际工程中,止水帷幕经常发生渗漏现象。本文建立了三维(3D)流固耦合的有限元模型,分析基坑开挖面下方止水帷幕渗漏对环境的影响。在定流量和定降深抽水的条件下,分别模拟了承压含水层中的止水帷幕均匀和局部渗漏的作用。结果表明,止水帷幕渗漏会引起地下水流方向的改变,基坑外地下水位的降低以及明显的附加变形。影响渗漏引起的水位降深和地表沉降的因素包括:渗漏点位置,渗漏面积,止水帷幕插入深度,降水井深度和含水层各向异性。此外,模拟结果还表明,在各种渗漏条件下的水位降深-时间曲线具有相似的模式。

Resumo

Cortinas impermeáveis são usadas como barreiras para bloquear as águas subterrâneas durante escavações profundas; no entanto, na prática, o vazamento de barreira ocorre com frequência. Este artigo estabelece um modelo tridimensional (3D) de elementos finitos acoplado fluido-sólido para analisar o efeito de vazamento de barreira abaixo da superfície da escavação. Vazamentos de barreira locais e uniformes em um aquífero confinado são simulados para uma vazão constante e rebaixamento fixo. Os resultados simulados mostram que o vazamento da barreira causa uma variação na direção do fluxo, queda da água subterrânea fora da escavação e deformação adicional significativa na direção longitudinal. Os fatores que influenciam a retirada e o assentamento do solo induzidos por vazamentos incluem o local do vazamento, a área do vazamento, a profundidade de penetração da barreira, a profundidade de penetração do poço de bombeamento e a anisotropia do aquífero. Além disso, os resultados da simulação mostram que as curvas de tempo de extração sob várias condições de vazamento têm padrões semelhantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidations. J Appl Phys 12(2):155–164

    Google Scholar 

  • Cheng WC, Ni JC, Shen SL (2017) Experimental and analytical modeling of shield segment under cyclic loading. Int J Geomech 17(6):04016146. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000810

    Article  Google Scholar 

  • Faunt CC, Sneed M, Traum J, Brandt JT (2016) Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol J 24:675–684

    Google Scholar 

  • He XC, Yang TL, Shen SL, Xu YS, Arulrajah A (2019) Land subsidence control zone and policy for the environmental protection of Shanghai. Int J Environ Res Public Health 16(15):2729

    Google Scholar 

  • Jin YF, Wu ZX, Yin ZY (2017) 2017. Estimation of critical state related formula in advanced constitutive modeling of granular material. Acta Geotech 12(6):1329–1351

    Google Scholar 

  • Knight DJ, Smith GL, Sutton JS (1996) Sizewell B foundation dewatering-system design construction and performance monitoring. Géotechnique 46(3):473–490

    Google Scholar 

  • Li MG, Zhang ZJ, Chen JJ, Wang JH, Xu AJ (2017) Zoned and staged construction of an underground complex in Shanghai soft clay. Tunn Undergr Space Technol 67:187–200

    Google Scholar 

  • Li MG, Chen JJ, Wang JH, Zhu YF (2018) Comparative study of construction methods for deep excavations above shield tunnels. Tunn Undergr Space Technol 71:329–339

    Google Scholar 

  • Li MG, Xiao X, Wang JH, Chen JJ (2019) Numerical study on responses of an existing metro line to staged deep excavations. Tunn Undergr Space Technol 85:268–281

    Google Scholar 

  • Liao SM, Peng F, Shen SL (2008) Analysis of shearing effect on tunnel induced by load transferalong longitudinal direction. Tunn Undergr Space Technol 23(4):421–430

    Google Scholar 

  • Luo ZJ, Zhang YY, Wu YX (2008) Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering. J Hydrodyn 20(5):596–602

    Google Scholar 

  • Lyu HM, Shen SL, Yang J, Yin ZY (2019a) Inundation analysis of metro systems with the storm water management model incorporated into a geographical information system: a case study in Shanghai. Hydrol Earth Syst Sci 23(10):4293–4307

    Google Scholar 

  • Lyu HM, Shen SL, Yang J, Zhou AN (2019b) Risk assessment of earthquake-triggered geohazards surrounding Wenchuan, China. Natural Hazards Rev. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000375, in press

    Google Scholar 

  • Lyu HM, Shen SL, Zhou AN, Yang J (2020) Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Sci Total Environ 171:135310. https://doi.org/10.1016/j.scitotenv.2019.135310

    Google Scholar 

  • Ni JC, Cheng WC, Ge L (2011) A case history of field pumping tests in a deep gravel formation in the Taipei Basin, Taiwan. Eng Geol 117(1–2):17–28

    Google Scholar 

  • Pacheco-Martínez J, Hernandez-Marín M, Burbey TJ, González-Cervantes N, Ortíz-Lozano JA, Zermeño-De-Leon ME, Solís-Pinto A (2013) Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley. México Eng Geol 164:172–186

    Google Scholar 

  • Pujades E, Carrera J, Vázquez-Suñé E, Jurado A, Vilarrasa V, Mascuñano-Salvador E (2012) Hydraulic characterization of diaphragm walls for cut and cover tunnelling. Eng Geol 125(27):1–10

    Google Scholar 

  • Pujades E, Jurado A, Carrera J, Vázquez-Sunè E, Dassargues A (2016) Hydrogeological assessment of non-linear underground enclosures. Eng Geol 207(3):91–102

    Google Scholar 

  • Pujades E, De Simone S, Carrera J, Vázquez-Suñé E, Jurado A (2017) Settlements around pumping wells: analysis of influential factors and a simple calculation procedure. J Hydrol 548:225–236

    Google Scholar 

  • Roscoe KH, Burland JB (1968) On the generalized stress-strain behaviour of ‘wet’ clay: engineering plasticity. Cambridge University Press, Cambridge, pp 553–609

    Google Scholar 

  • Shaqour FM, Hasan SE (2008) Groundwater control for construction purposes: a case study from Kuwait. Environ Geol 53(8):1603–1612

    Google Scholar 

  • Serrano-Juan A, Vázquez-Suñè E, Monserrat O, Crosetto M, Hoffmann C, Ledesma A, Criollo R, Pujades E, Velasco V, Garcia-Gil A, Alcaraz M (2016) Gb-SAR interferometry displacement measurements during dewatering in construction works: case of La Sagrera railway station in Barcelona, Spain. Eng Geol 205:104–115

    Google Scholar 

  • Serrano-Juan A, Pujades E, Vázquez-Suñè E, Crosetto M, Cuevas-González M (2017) Leveling vs. InSAR in urban underground construction monitoring: pros and cons—case of La Sagrera railway station (Barcelona, Spain). Eng Geol 218:1–11

    Google Scholar 

  • Shen SL, Chai JC, Hong ZS, Cai FX (2005) Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotextiles Geomembranes 23(6):463–485

    Google Scholar 

  • Shen SL, Wu YX, Xu YS, Hino T, Wu HN (2015) Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Comput Geotech 2015(7):196–207

    Google Scholar 

  • Shen SL, Wu YX, Misra A (2017) Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Comput Geotech 91:192–202

    Google Scholar 

  • Tan Y, Lu Y (2017a) Why excavation of a small air shaft caused excessively large displacements: forensic investigation. J Perform Constr Facil 31(2):04016083

    Google Scholar 

  • Tan Y, Lu Y (2017b) Forensic diagnosis of a leaking accident during excavation. J Perform Constr Facil 31(5):04017061

    Google Scholar 

  • Tan Y, Zhu HH, Peng FL, Karlsrud K, Wei B (2017) Characterization of semi-top-down excavation for subway station in Shanghai soft ground. Tunn Undergr Space Technol 68:244–261

    Google Scholar 

  • Tan Y, Lu Y, Wang D (2018a) Deep excavation of the gate of the orient in Suzhou stiff clay: composite earth retaining systems and dewatering plans. J Geotech Geoenviron Eng 144(3):05017009

    Google Scholar 

  • Tan Y, Jiang W, Luo W, Lu Y, Xu C (2018b) Longitudinal sliding event during excavation of Feng-Qi Station of Hangzhou metro line 1: post failure investigation. J Perform Constr Facil 32(4):04018039

    Google Scholar 

  • Tan Y, Lu Y, Xu C, Wang D (2018c) Investigation on performance of a large circular pit-in-pit excavation in clay-gravel-cobble mixed strata. Tunn Undergr Space Technol 79:356–374

    Google Scholar 

  • Tan Y, Lu Y, Wang D (2019a) Practical solutions for concurrent excavation of neighboring mega basements closely surrounded by utility tunnels in Shanghai Hongqiao CBD. Practice Period Structur Design Construct 24(4):05019005

    Google Scholar 

  • Tan Y, Wei B, Lu Y, Yang B (2019b) Is basal reinforcement essential for long and narrow subway excavation bottoming out in Shanghai soft clay? J Geotech Geoenviron 145(5):05019002

    Google Scholar 

  • Vilarrasa V, Carrera J, Jurado A, Pujades E, Vazquez-Suñé E (2011) A methodology for characterizing the hydraulic effectiveness of an annular low-permeability barrier. Eng Geol 120(1):68–80

    Google Scholar 

  • Wang JX, Deng YS, Ma RQ, Liu XT, Guo QF, Liu SL, Shao YL, Wu LB, Zhou J, Yang TL, Wang HM, Huang XL (2018) Model test on partial expansion in stratified subsidence during foundation pit dewatering. J Hydrol 557:489–508

    Google Scholar 

  • Wang XW, Yang TL, Xu YS, Shen SL (2019a) Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering. J Hydrol 577(2019):123969. https://doi.org/10.1016/j.jhydrol.2019.123969

    Article  Google Scholar 

  • Wang ZF, Shen SL, Modoni G (2019b) Enhancing discharge of spoil to mitigate disturbance induced by horizontal jet grouting in clayey soil: theoretical model and application. Comput Geotech 111(2019):222–228

    Google Scholar 

  • Wu HN, Huang RQ, Sun WJ, Shen SL (2014) Leaking behaviour of shield tunnels under the Huangpu River of Shanghai with induced hazards. Nat Hazards 70(2):1115–1132

    Google Scholar 

  • Wu YX, Shen SL, Wu HN, Xu YS, Yin ZY, Sun WJ (2015a) Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer. Eng Geol 196:59–70

    Google Scholar 

  • Wu YX, Shen SL, Xu YS, Yin ZY (2015b) Characteristics of groundwater seepage with cutoff wall in gravel aquifer I: field observations. Can Geotech J 52(10):1526–1538

    Google Scholar 

  • Wu YX, Shen SL, Yin ZY, Xu YS (2015c) Characteristics of groundwater seepage with cutoff wall in gravel aquifer II: numerical analysis. Can Geotech J 52(10):1539–1549

    Google Scholar 

  • Wu YX, Shen SL, Yuan DJ (2016) Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J Hydrol 539:554–566

    Google Scholar 

  • Wu HN, Shen SL, Yang J (2017a) Identification of tunnel settlement caused by land subsidence in soft deposit of Shanghai. J Perform Construct Facil 31(6):04017092. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001082

    Article  Google Scholar 

  • Wu YX, Shen JS, Cheng WC, Hino T (2017b) Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects. Eng Geol 226:44–51

    Google Scholar 

  • Wu YX, Lyu HM, Shen JS, Arulrajah A (2018) Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation. Environ Earth Sci 77(10):392

    Google Scholar 

  • Wu YX, Lyu HM, Han J, Shen SL (2019) Dewatering-induced building settlement around a deep excavation in soft deposit in Tianjin, China. J Geotech Geoenviron 145(5):05019003

    Google Scholar 

  • Wu HN, Shen SL, Chen RP, Zhou AN (2020a) Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels. Comput Geotech. https://doi.org/10.1016/j.compgeo.2020.103549, in press

    Google Scholar 

  • Wu YX, Shen SL, Lyu HM, Zhou AN (2020b) Analyses of leakage effect of waterproof curtain during excavation dewatering, J Hydrol 583(2020):124582. https://doi.org/10.1016/j.jhydrol.2020.124582

    Google Scholar 

  • Xu YQ, Liu GF, Sheng YQ (2013) Analysis and evaluation of sealing effect of rock-socketed underground diaphragm in deep foundation pit (in Chinese). Rock Soil Mech 34(10):2905–2910

    Google Scholar 

  • Xu YS, Shen SL, Ma L, Sun WJ, Yin ZY (2014) Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng Geol 183:254–264

    Google Scholar 

  • Xu YS, Shen SL, Lai Y, Zhou AN (2018) Design of Sponge City: lessons learnt from an ancient drainage system in Ganzhou, China. J Hydrol 563(2018):900–908. https://doi.org/10.1016/j.jhydrol.2018.06.075

    Article  Google Scholar 

  • Xu YS, Yan XX, Shen SL, Zhou AN (2019) Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation. Hydrogeol J 27(7):2659–2672. https://doi.org/10.1007/s10040-019-01992-3

    Article  Google Scholar 

  • Yin ZY, Jin YF, Shen SL, Huang HW (2017) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model. Acta Geotech 12(4):849–867

    Google Scholar 

  • Yin ZY, Jin YF, Shen JS, Hicher PY (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42(1):70–94

    Google Scholar 

  • Zeng CF, Xue XL, Zheng G, Xue TY, Mei GX (2018a) Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system. J Hydrol 559:609–626

    Google Scholar 

  • Zeng FY, Zhang ZJ, Wang JH, Li MG (2018b) Observed performance of two adjacent and concurrently excavated deep foundation pits in soft clay. J Perform Construct Facil 32(4):04018040. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001184

    Google Scholar 

  • Zeng CF, Zheng G, Xue XL, Mei GX (2019) Combined recharge: a method to prevent ground settlement induced by redevelopment of recharge wells. J Hydrol 568:1–11

    Google Scholar 

  • Zhang YQ, Wang JH, Chen JJ, Li MG (2017a) Numerical study on the responses of groundwater and strata to pumping and recharge in a deep confined aquifer. J Hydrol 548:342–352

    Google Scholar 

  • Zhang YQ, Li MG, Wang JH, Chen JJ, Zhu YF (2017b) Field tests of pumping-recharge technology for deep confined aquifers and its application to a deep excavation. Eng Geol 228:249–259

    Google Scholar 

  • Zhang S, Ye G, Wang JH (2018a) Elasto-plastic model for overconsolidated clays with focus on volume change under general loading conditions. Int J Geomechan 18(3):04018005. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001101

    Article  Google Scholar 

  • Zhang S, Ye G, Liao CC, Wang JH (2018b) Elasto-plastic model of structured marine clay under general loading conditions. Appl Ocean Res 76(2018):211–220. https://doi.org/10.1016/j.apor.2018.04.011

    Article  Google Scholar 

  • Zhang Y, Zhou A, Nazem M, Carter J (2019) Finite element implementation of a fully coupled hydro-mechanical model and unsaturated soil analysis under hydraulic and mechanical loads. Comput Geotech 110:222–241

    Google Scholar 

  • Zheng G, Zeng CF, Diao Y, Xue XL (2014) Test and numerical research on wall deflections induced by pre-excavation dewatering. Comput Geotech 62:244–256

    Google Scholar 

  • Zhou HB, Cai LB (2015) Risk and control of the artesian water for deep excavation engineering in soft soil area. Journal of Tongji University (Natural Science) 43(1):27–32. (in Chinese)

Download references

Funding

The research work described herein was funded by the National Nature Science Foundation of China (NSFC) (Grant No. 41807235) and was partially funded by the Research Funding of Shantou University for New Faculty Member (Grant No. NTF19024-2019) and the Innovative Research Funding of the Science and Technology Commission of Shanghai Municipality (Grant No. 18DZ1201102). These financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui-Long Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YX., Lyu, HM., Shen, SL. et al. A three-dimensional fluid-solid coupled numerical modeling of the barrier leakage below the excavation surface due to dewatering. Hydrogeol J 28, 1449–1463 (2020). https://doi.org/10.1007/s10040-020-02142-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02142-w

Keywords

Navigation