Skip to main content
Log in

Studying Magnetic Field Variations Accompanying the 2011 June 7 Eruptive Event, by Using Nonlinear Force-Free Field Modeling

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the features of the magnetic field variations within the 2011 June 7 eruptive event that includes a large filament eruption, a flare, and a CME formation. The magnetic field characteristics were obtained by using vector measurements of the magnetic field with the SDO/HMI and 3D magnetic field calculations based on nonlinear force-free field (NLFFF) modeling. Strong and relatively fast variations in the photospheric field characteristics after the flare onset are shown to be observed only within a small site (\(20''\times 20''\)) of the eruption region in the neighborhood of the polarity inversion line (PIL).

We found that the magnetic field strength, the electric current density, current helicity density and free magnetic energy density above this region are growing with height reaching their maximums at the level of ∼15 Mm. After 2011 July 7 00:00 UT, this height started gradually reducing.

The NLFFF extrapolation revealed the presence of a magnetic flux rope elongated approximately along the main PIL and an arcade of magnetic field lines over it. The flux-rope axis is located at height of ∼15 Mm. The flux-rope footpoints approximately coincide with the eruptive filament footpoints. Thus, we concluded that the detected flux rope is associated with the magnetic structure of the observed filament. The detected strong variation of the magnetic field within the eruption region are most probably associated with the magnetic field reconfiguration after the filament eruption. The \(T_{n}\) parameter, which is the average magnetic field twist within the flux rope, was found to increase up to 2.5 rotations before the flare onset, and to dramatically decrease afterward. This may reflect the developing of kink instability that presumably triggered this eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Notes

  1. The evident conditional character of this notation should be noted, which is related to its value being non-additive. Equation 13 contains the value of the integral over subvolume, which, strictly speaking, is not free energy. For an arbitrary subvolume, the potential field used, does not, in the general case, satisfy the condition (necessary in the definition of “free energy”) that the normal components \(B_{P}\) and \(B_{N}\) be equal at the subvolume boundaries. As a result, the physical meaning of \(e_{f}^{m}(h,t)\) can substantially differ from the physical value of the “free energy” concept. For example, this value, unlike free energy, does not have to be always positive. On the contrary, its negative values in the lower layers (Figure 12(a, c)) reflect, in terms of physics, the force-free character of the \(B_{N}\) we obtain, following from the virial theorem for force-free fields (Livshits et al., 2015; Rudenko and Dmitrienko, 2020).

References

  • Aschwanden, M.J., Xu, Y., Jing, J.: 2014, Global energetics of solar flares. I. Magnetic energies. Astrophys. J.797, 50. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Démoulin, P., Grappin, R.: 2005, Equilibrium and observational properties of line-tied twisted flux tubes. Astron. Astrophys.430, 1067. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys.543, A110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bao, S., Zhang, H.: 1998, Patterns of current helicity for the twenty-second solar cycle. Astrophys. J. Lett.496, L43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1999, Introduction to magnetic helicity. Plasma Phys. Control. Fusion41, B167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 2003, In: Ferriz-Mas, A., Núñez, M. (eds.) Topological Quantities in Magnetohydrodynamics, 345. DOI . ADS .

    Chapter  MATH  Google Scholar 

  • Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech.147, 133. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Berger, M.A., Prior, C.: 2006, The writhe of open and closed curves. J. Phys. A, Math. Gen.39, 8321. DOI . ADS .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berger, M.A., Ruzmaikin, A.: 2000, Rate of helicity production by solar rotation. J. Geophys. Res.105, 10481. DOI . ADS .

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M.: 1995, The large angle spectroscopic coronagraph (lasco). Solar Phys.162, 357.

    Article  ADS  Google Scholar 

  • Canou, A., Amari, T.: 2010, A twisted flux rope as the magnetic structure of a filament in active region 10953 observed by hinode. Astrophys. J.715, 1566. DOI . ADS .

    Article  ADS  Google Scholar 

  • DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J.539, 944. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dorovskyy, V.V., Melnik, V.N., Konovalenko, A.A., Brazhenko, A.I., Panchenko, M., Poedts, S., Mykhaylov, V.A.: 2015, Fine and superfine structure of the decameter-hectometer type II burst on 7 June 2011. Solar Phys.290, 2031. DOI . ADS .

    Article  ADS  Google Scholar 

  • Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J.759, 71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fainshtein, V.G., Egorov, Y.I., Rudenko, G.V.: 2017, Variations of the photospheric magnetic field following the eruptive event on June 7, 2011. Geomagn. Aeron.57, 906. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fainshtein, V.G., Egorov, Y.I., Rudenko, G.V., Anfinogentov, S.A.: 2016, Magnetic field variations accompanying the filament eruption and the flare related to coronal mass ejections. Geomagn. Aeron.56, 1060. DOI . ADS .

    Article  ADS  Google Scholar 

  • Finn, J.M., Antonsen, T.M.: 1985, Magnetic helicity: What is it and what is it good for. Comments Plasma Phys. Control. Fusion9.

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res.105, 23153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., LaBonte, B.J.: 2007, Magnetic energy and helicity budgets in the active region solar corona. I. Linear force-free approximation. Astrophys. J.671, 1034. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: origin of the shear-generating Lorentz force. Astrophys. J.761, 61. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Tziotziou, K., Raouafi, N.-E.: 2012, Magnetic energy and helicity budgets in the active-region solar corona. II. Nonlinear force-free approximation. Astrophys. J.759, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosain, S., Démoulin, P., López Fuentes, M.: 2014, Distribution of electric currents in sunspots from photosphere to corona. Astrophys. J.793, 15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, Y., Schmieder, B., Démoulin, P., Wiegelmann, T., Aulanier, G., Török, T., Bommier, V.: 2010, Coexisting flux rope and dipped arcade sections along one solar filament. Astrophys. J.714, 343. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 2000, Implosions in coronal transients. Astrophys. J. Lett.531, L75. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Fisher, G.H., Welsch, B.T.: 2008, Flare energy and magnetic field variations. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, Astronomical Society of the Pacific Conference Series383, 221. ADS .

    Google Scholar 

  • Inglis, A.R., Gilbert, H.R.: 2013, Hard X-ray and ultraviolet emission during the 2011 June 7 solar flare. Astrophys. J.777, 30. DOI . ADS .

    Article  ADS  Google Scholar 

  • Inoue, S., Hayashi, K., Magara, T., Choe, G.S., Park, Y.D.: 2014, Magnetohydrodynamic simulation of the X2.2 solar flare on 2011 February 15. I. Comparison with the observations. Astrophys. J.788, 182. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jing, J., Wiegelmann, T., Suematsu, Y., Kubo, M., Wang, H.: 2008, Changes of magnetic structure in three dimensions associated with the X3.4 flare of 2006 December 13. Astrophys. J. Lett.676, L81. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuckein, C., Martínez Pillet, V., Centeno, R.: 2012, An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure. Astron. Astrophys.539, A131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys.275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Liu, Y., Falconer, D., Goode, P.R., Denker, C., Wang, H.: 2005, Rapid change of \(\delta \) spot structure associated with seven major flares. Astrophys. J.622, 722. DOI . ADS .

    Article  ADS  Google Scholar 

  • Livshits, M.A., Rudenko, G.V., Katsova, M.M., Myshyakov, I.I.: 2015, The magnetic virial theorem and the nature of flares on the Sun and other G stars. Adv. Space Res.55, 920. DOI . ADS .

    Article  ADS  Google Scholar 

  • Longcope, D.W., Welsch, B.T.: 2000, A model for the emergence of a twisted magnetic flux tube. Astrophys. J.545, 1089. DOI . ADS .

    Article  ADS  Google Scholar 

  • Okamoto, T.J., Tsuneta, S., Lites, B.W., Kubo, M., Yokoyama, T., Berger, T.E., Ichimoto, K., Katsukawa, Y., Nagata, S., Shibata, K., Shimizu, T., Shine, R.A., Suematsu, Y., Tarbell, T.D., Title, A.M.: 2008, Emergence of a helical flux rope under an active region prominence. Astrophys. J. Lett.673, L215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Valori, G., Démoulin, P., Dalmasse, K.: 2015, Testing magnetic helicity conservation in a solar-like active event. Astron. Astrophys.580, A128. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys.275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2013, A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 15 February 2011 X2.2 flare. Solar Phys.287, 415. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Sudol, J.J.: 2010, Abrupt longitudinal magnetic field changes in flaring active regions. Astrophys. J.724, 1218. DOI . ADS .

    Article  ADS  Google Scholar 

  • Petrovay, K., Chatterjee, P., Choudhuri, A.: 2006, On the origin of current helicity in active regions. In: SOHO-17. 10 Years of SOHO and Beyond, ESA Special Publication617, 67. ADS .

    Google Scholar 

  • Pevtsov, A.A., Maleev, V.M., Longcope, D.W.: 2003, Helicity evolution in emerging active regions. Astrophys. J.593, 1217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ravindra, B., Venkatakrishnan, P., Tiwari, S.K., Bhattacharyya, R.: 2011, Evolution of currents of opposite signs in the flare-productive solar active region NOAA 10930. Astrophys. J.740, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rudenko, G.V., Anfinogentov, S.A.: 2014, Very fast and accurate azimuth disambiguation of vector magnetograms. Solar Phys.289, 1499. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rudenko, G.V., Anfinogentov, S.A.: 2017, Algorithms of the potential field calculation in a three-dimensional box. Solar Phys.292, 103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rudenko, G.V., Dmitrienko, I.S.: 2020, Validity of NLFFF optimization reconstruction. Solar Phys. (submitted).

  • Rudenko, G.V., Myshyakov, I.I.: 2009, Analysis of reconstruction methods for nonlinear force-free fields. Solar Phys.257, 287. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett.464, L199. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys.275, 207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Seehafer, N.: 1990, Electric current helicity in the solar atmosphere. Solar Phys.125, 219. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J.748, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Titov, V.S., Priest, E.R., Demoulin, P.: 1993, Conditions for the appearance of “bald patches” at the solar surface. Astron. Astrophys.276, 564. ADS .

    ADS  Google Scholar 

  • Török, T., Berger, M.A., Kliem, B.: 2010, The writhe of helical structures in the solar corona. Astron. Astrophys.516, A49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys.413, L27. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Török, T., Leake, J.E., Titov, V.S., Archontis, V., Mikić, Z., Linton, M.G., Dalmasse, K., Aulanier, G., Kliem, B.: 2014, Distribution of electric currents in solar active regions. Astrophys. J. Lett.782, L10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Valori, G., Démoulin, P., Pariat, E.: 2012, Comparing values of the relative magnetic helicity in finite volumes. Solar Phys.278, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Valori, G., Pariat, E., Anfinogentov, S., Chen, F., Georgoulis, M.K., Guo, Y., Liu, Y., Moraitis, K., Thalmann, J.K., Yang, S.: 2016, Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: Finite volume methods. Space Sci. Rev.201, 147. DOI . ADS .

    Article  ADS  Google Scholar 

  • van Ballegooijen, A.A., Martens, P.C.H.: 1989, Astrophys. J.343, 971. DOI .

    Article  ADS  Google Scholar 

  • van Driel-Gesztelyi, L., Baker, D., Török, T., Pariat, E., Green, L.M., Williams, D.R., Carlyle, J., Valori, G., Démoulin, P., Kliem, B., Long, D.M., Matthews, S.A., Malherbe, J.-M.: 2014, Coronal magnetic reconnection driven by CME expansion the 2011 June 7 event. Astrophys. J.788, 85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr., Rich, N.B.: 2007, Coronal pseudostreamers. Astrophys. J.658, 1340. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, H., Gallagher, P., Yurchyshyn, V., Yang, G., Goode, P.R.: 2002, Core and large-scale structure of the 2000 November 24 X-class flare and coronal mass ejection. Astrophys. J.569, 1026. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2000, Are electric currents in solar active regions neutralized? Astrophys. J.532, 616. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2015, Estimating electric current densities in solar active regions. Solar Phys.290, 1147. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J.540, 1150. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys.219, 87. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Inhester, B.: 2010, How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling? Astron. Astrophys.516, A107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Sakurai, T.: 2012, Solar force-free magnetic fields. Living Rev. Solar Phys.9, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yardley, S.L., Green, L.M., Williams, D.R., van Driel-Gesztelyi, L., Valori, G., Dacie, S.: 2016, Flux cancellation and the evolution of the eruptive filament of 2011 June 7. Astrophys. J.827, 151. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yelles Chaouche, L., Kuckein, C., Martínez Pillet, V., Moreno-Insertis, F.: 2012, The three-dimensional structure of an active region filament as extrapolated from photospheric and chromospheric observations. Astrophys. J.748, 23. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, H., Sakurai, T., Pevtsov, A., Gao, Y., Xu, H., Sokoloff, D.D., Kuzanyan, K.: 2010, Mon. Not. Roy. Astron. Soc.402, L30.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the SDO/AIA, SDO/HMI, and GOES teams for a possibility to freely use the data from these instruments. G.V. Rudenko would like to thank Irkutsk Supercomputer Center of SB RAS for providing the access to HPC-cluster «Akademik V.M. Matrosov» (Irkutsk Supercomputer Center of SB RAS, Irkutsk: ISDCT SB RAS; http://hpc.icc.ru, accessed 16.05.2019). The study was carried out within the basic funding from Basic Research Program II.16. Ya.I. Egorov, S.A. Anfinogentov and I.I. Myshyakov acknowledge partial support from the Russian Foundation for Basic Research Grants No. 18-32-20165. I.I. Myshyakov acknowledges partial support from the RFBR grant 18-32-00540. Ya.I. Egorov, V.G. Fainshtein and G.V. Rudenko acknowledge partial support from the Russian Foundation for Basic Research Grants No. 20-02-00150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Egorov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, Y.I., Fainshtein, V.G., Myshyakov, I.I. et al. Studying Magnetic Field Variations Accompanying the 2011 June 7 Eruptive Event, by Using Nonlinear Force-Free Field Modeling. Sol Phys 295, 52 (2020). https://doi.org/10.1007/s11207-020-01613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01613-3

Keywords

Navigation