Skip to main content
Log in

Non-sticky and Non-slippery Biomimetic Patterned Surfaces

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In modern mechanical design, non-sticky and non-slippery surfaces are highly preferred in many applications. In this work, bio-inspired micro patterns of hexagonal pillar and round dimple with various geometric parameters are fabricated, and the static friction and adhesion performances of the prepared surfaces are investigated. It is found that hexagonal pillar patterns can enhance the static friction and weaken the adhesion performances either at dry or wet conditions. The effects of round dimple patterns on the tribological performances depend on the wetting condition, the load, and the area density. The function mechanism of the designed surfaces is revealed, and a general design principle of the biomimetic patterned surface is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varenberg M, Gorb S. A beetle-inspired solution for underwater adhesion. Journal of the Royal Society Interface, 2008, 5, 383–385.

    Article  Google Scholar 

  2. Zhang C Q, McAdams D A, Grunlan J C. Nano/Micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Advanced Materials, 2016, 28, 6292–6321.

    Article  Google Scholar 

  3. Li Y S, Krahn J, Menon C. Bioinspired dry adhesive materials and their application in robotics: A review. Journal of Bionic Engineering, 2016, 13, 181–199.

    Article  Google Scholar 

  4. Baik S, Kim D W, Park Y J, Lee T J, Bhang S H, Pang C H. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature, 2017, 546, 396–400.

    Article  Google Scholar 

  5. Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 2002, 42, 1081–1090.

    Article  Google Scholar 

  6. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb S N, Arzt E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proceedings of the National Academy of Sciences, 2005, 102, 16293–16296.

    Article  Google Scholar 

  7. Federle W, Barnes W J P, Baumgartner W, Drechsler P, Smith J M. Wet but not slippery: Boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Interface, 2006, 3, 689–697.

    Article  Google Scholar 

  8. Iturri J, Xue L J, Kappl M, García-Fernández L, Barnes W J P, Butt H-J, Campo A. Torrent frog-inspired adhesives: Attachment to flooded surfaces. Advanced Functional Materials, 2015, 25, 1499–1505.

    Article  Google Scholar 

  9. Varenberg M, Gorb S N. Hexagonal surface micropattern for dry and wet friction. Advanced Materials, 2009, 21, 483–486.

    Article  Google Scholar 

  10. Wang S, Li M, Huang W, Wang X L. Sticking/Climbing ability and morphology studies of the toe pads of chinese fire belly newt. Journal of Bionic Engineering, 2016, 13, 115–123.

    Article  Google Scholar 

  11. Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.

    Article  Google Scholar 

  12. Barnes W J P. Functional morphology and design constraints of smooth adhesive pads. MRS Bulletin, 2011, 32, 479–485.

    Article  Google Scholar 

  13. Dorogin L, Tiwari A, Rotella C, Mangiagalli P, Persson B N J. Role of preload in adhesion of rough surfaces. Physical Review Letters, 2017, 118, 238001.

    Article  Google Scholar 

  14. Barnes W J P, Goodwyn P J P, Nokhbatolfoghahai M, Gorb S N. Elastic modulus of tree frog adhesive toe pads. Journal of Comparative Physiology A, 2011, 197, 969–978.

    Article  Google Scholar 

  15. Chen D H, Zhang Y C, Long G, Liu W, Li X H, Sun Y H, Chang Z Y. An optimal wet friction plate inspired by biological surface patterns. Journal of Bionic Engineering, 2018, 15, 872–882.

    Article  Google Scholar 

  16. Ji A, Zhao Z H, Manoonpong P, Wang W, Chen G M, Dai Z D. A bio-inspired climbing robot with flexible pads and claws. Journal of Bionic Engineering, 2018, 15, 368–378.

    Article  Google Scholar 

  17. Tiwari A, Dorogin L, Bennett A I, Schulze K D, Sawyer W G, Tahir M, Heinrich G, Persson B N J. The effect of surface roughness and viscoelasticity on rubber adhesion. Soft Matter, 2017, 13, 3602–3621.

    Article  Google Scholar 

  18. Xue L J, Iturri J, Kappl M, Butt H J, Campo A. Bioinspired orientation-dependent friction. Langmuir, 2014, 30, 11175–11182.

    Article  Google Scholar 

  19. Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 2002, 99, 12252–12256.

    Article  Google Scholar 

  20. Butt H-J, Barnes W J P, Campo A, Kappl M, Schonfeld F. Capillary forces between soft, elastic spheres. Soft Matter, 2010, 6, 5930–5936.

    Article  Google Scholar 

  21. Persson B N J. Wet adhesion with application to tree frog adhesive toe pads and tires. Journal of Physics: Condensed Matter, 2007, 19, 376110.

    MathSciNet  Google Scholar 

  22. Lorenz B, Persson B N J. Fluid squeeze-out between rough surfaces: Comparison of theory with experiment. Journal of Physics: Condensed Matter, 2011, 23, 355005.

    Google Scholar 

  23. Xie J, Li M, Dai Q W, Huang W, Wang X L. Key parameters of biomimetic patterned surface for wet adhesion. International Journal of Adhesion and Adhesives, 2018, 82, 72–78.

    Article  Google Scholar 

  24. Drotlef D-M, Stepien L, Kappl M, Barnes W J P, Butt H-J, Campo A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Advanced Functional Materials, 2013, 23, 1137–1146.

    Article  Google Scholar 

  25. Huang W, Wang X L. Biomimetic design of elastomer surface pattern for friction control under wet conditions. Bioinspiration and Biomimetics, 2013, 8, 46001–46006.

    Article  Google Scholar 

  26. Li M, Dai Q W, Huang W, Wang X L. Pillar versus dimple patterned surfaces for wettability and adhesion with varying scales. Journal of the Royal Society Interface, 2018, 15, 20180681.

    Article  Google Scholar 

  27. Li M, Jiao Q, Dai Q W, Shi L P, Huang W, Wang X L. Effects of bulk viscoelasticity and surface wetting on the contact and adhesive properties of a soft material. Polymer Testing, 2019, 74, 266–273.

    Article  Google Scholar 

  28. Persson B N J. Biological adhesion for locomotion: Basic principles. Journal of Adhesion Science and Technology, 2007, 21, 1145–1173.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Nature Science Foundation of China (Grant No. 51675268), and Six Talent Peaks Project in Jiangsu Province (Grant No. 2016-HYGC-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Chang, Q., Li, M. et al. Non-sticky and Non-slippery Biomimetic Patterned Surfaces. J Bionic Eng 17, 326–334 (2020). https://doi.org/10.1007/s42235-020-0026-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0026-3

Keywords

Navigation