Skip to main content
Log in

Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, turbulent flow and heat transfer inside a three-dimensional tube with elliptic and circular cross sections are simulated using finite volume method. The main aim of this study is to investigate the effects of ellipse aspect ratio and twisting of the tube wall on the flow characteristics and heat transfer. According to the obtained results, by converting the cross section from circular to elliptical and reducing the aspect ratio of elliptic tube with smooth wall, the friction factor and heat transfer increase. Investigating on the effect of wall twisting shows that, due to generation of secondary flow, the heat transfer and friction factor increase. By reducing the twist pitch, the generated vortices get merged into a large vortex and affect the flow across the whole cross section, causing the mixing to improve and heat transfer to increase. According to the obtained results, in the elliptical tube with an aspect ratio of 1.65, at twist pitches of 0.4 and 0.2, the heat transfer increases compared to a smooth tube with a similar cross section by 5% and 20%, respectively; and by a sudden reduction of twist pitch from 0.2 to 0.1 along the path, the heat transfer improves up to 30%. The effect of addition of multi-wall carbon nanotube nanoparticles to the base fluid inside the twisted elliptical tube with an aspect ratio of 1.65 on the heat transfer and flow characteristics is also analyzed, 28–32% in heat transfer for Reynolds number of 4000 and 16,000. According to the obtained results, the performance evaluation criterion (PEC) of nanofluid with low volume fraction and at lower Reynolds numbers is less than 1; however, for the flow of nanofluid with a volume fraction of 0.03, the heat transfer enhancement prevails over the increase in the pressure drop and the PEC is more than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a :

Major diameter

AR:

Aspect ratio (a/b)

b :

Minor diameter

c p :

Constant pressure specific heat capacity (kJ kg−1 K−1)

D h :

Hydraulic diameter (m)

E :

Total mechanical energy (kJ)

f :

Friction factor

G k :

Turbulent kinetic energy generation caused by average velocity gradient

G ω :

Turbulent kinetic energy generation caused by average velocity gradient

h :

Convection heat transfer coefficient (W m−2 K)

L :

Tube length (m)

k :

Heat conductivity coefficient (W m−1 K−1)

k s :

Solid heat conductivity coefficient (W m−1 K−1)

k f :

Fluid heat conductivity coefficient (W m−1 K−1)

k eff :

Nanofluid heat conductivity coefficient (W m−1 K−1)

Nu:

Nusselt number

P :

Pressure (Pa)

S k :

Source terms in equation of k

S ɛ :

Source terms in equation of ω

T :

Temperature (K)

T w :

Average temperature of the wall (K)

T m :

Average temperature of the bulk (K)

PEC:

Performance evaluation criterion

Pr:

Prandtl number

Prt :

Turbulent Prandtl number

q″:

Heat exchange in tube (kJ)

u i :

Velocity component (x, y, z) (m s−1)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (kg ms−1)

μ t :

Turbulent dynamic viscosity (kg ms−1)

Γ k :

Effective viscosity in equation of k

Γ ω :

Effective viscosity in equation of ω

μ eff :

Nanofluid dynamic viscosity (kg ms−1)

φ :

Nanoparticle volume fraction

(τij)eff :

The deviation stress tensor

λ :

Twist pitch (m)

ΔP :

Pressure drop (kPa)

References

  1. Hemmat Esfe M, Mohseni Behbahani P, Abbasian Arani AA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85:15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128(1):249–58.

    Article  CAS  Google Scholar 

  2. Hemmat Esfe M, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128(3):1359–71.

    Article  Google Scholar 

  3. Dastmalchi M, Sheikhzadeh GA, Abbasian Arani AA. Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int J Therm Sci. 2015;95:88–98.

    Article  CAS  Google Scholar 

  4. Abbasian Arani AA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal–hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128:550–63.

    Article  Google Scholar 

  5. Khoshvaght-Aliabadi M, Arani-Lahtari Z. Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature. Appl Therm Eng. 2016;93:101–12.

    Article  Google Scholar 

  6. Khoshvaght-Aliabadi M, Arani-Lahtari Z. Proposing new configurations for twisted square channel (TSC): nanofluid as working fluid. Appl Therm Eng. 2016;108:709–19.

    Article  CAS  Google Scholar 

  7. Tan X, Zhu D, Zhou G, Zeng L. Heat transfer and pressure drop performance of twisted oval tube heat exchanger. Appl Therm Eng. 2013;50:374–83.

    Article  Google Scholar 

  8. Yang S, Zhang L, Xu H. Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes. Appl Therm Eng. 2011;31:2981–91.

    Article  Google Scholar 

  9. Khoshvaght-Aliabadi M, Arani Z, Rahimpour F. Influence of Al2O3–H2O nanofluid on performance of twisted minichannels. Adv Powder Technol. 2016;27:1514–25.

    Article  CAS  Google Scholar 

  10. Tang X, Dai X, Zhu D. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. Int J Heat Mass Transf. 2015;90:523–41.

    Article  Google Scholar 

  11. Bhadouriya R, Agrawal A, Prabhu SV. Experimental and numerical study of fluid flow and heat transfer in a twisted square duct. Int J Heat Mass Transf. 2015;82:143–58.

    Article  Google Scholar 

  12. Eiamsa-ard S, Promthaisong P, Thianpong C, Pimsarn M, Chuwattanakul V. Influence of three-start spirally twisted tube combined with triple-channel twisted tape insert on heat transfer enhancement. Chem Eng Process Process Intensif. 2016;102:117–29.

    Article  CAS  Google Scholar 

  13. Cheng J, Qian Z, Wang Q. Analysis of heat transfer and flow resistance of twisted oval tube in low Reynolds number flow. Int J Heat Mass Transf. 2017;109:761–77.

    Article  Google Scholar 

  14. Ahmed MA, Yusoff MZ, Ng KC, Shuaib NH. Numerical investigations on the turbulent forced convection of nanofluids flow in a triangular-corrugated channel. Case Stud Therm Eng. 2015;6:212–25.

    Article  Google Scholar 

  15. Dawood HK, Mohammed HA, Sidik NAC, Munisamy KM. Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid. Int Commun Heat Mass Transf. 2015;66:148–57.

    Article  CAS  Google Scholar 

  16. Rakhsha M, Akbaridoust F, Abbassi A, Majid SA. Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature. Powder Technol. 2015;283:178–89.

    Article  CAS  Google Scholar 

  17. Bahremand H, Abbassi A, Saffar-Avval M. Experimental and numerical investigation of turbulent nanofluid flow in helically coiled tubes under constant wall heat flux using Eulerian–Lagrangian approach. Powder Technol. 2015;269:93–100.

    Article  CAS  Google Scholar 

  18. Yan W, Gao X, Xu W, Ding C, Luo Z, Zhang Z. Heat transfer performance of epoxy resin Flows in a horizontal twisted tube. Appl Therm Eng. 2017;127:28–34.

    Article  CAS  Google Scholar 

  19. Wu CC, Chen CK, Yang YT, Huang KH. Numerical simulation of turbulent flow forced convection in a twisted elliptical tube. Int J Therm Sci. 2018;132:199–208.

    Article  Google Scholar 

  20. Li X, Zhu D, Yin Y, Liu S, Mo X. Experimental study on heat transfer and pressure drop of twisted oval tube bundle in cross flow. Exp Therm Fluid Sci. 2018;99:251–8.

    Article  CAS  Google Scholar 

  21. Samruaisin P, Kunlabud S, Kunnarak K, Chuwattanakul V, Eiamsa-ard S. Intensification of convective heat transfer and heat exchanger performance by the combined influence of a twisted tube and twisted tape. Case Stud Therm Eng. 2019;14:100489.

    Article  Google Scholar 

  22. Feizabadi A, Khoshvaght-Aliabadi M, Rahimi AB. Experimental evaluation of thermal performance and entropy generation inside a twisted U-tube equipped with twisted-tape inserts. Int J Therm Sci. 2019;145:106051.

    Article  Google Scholar 

  23. Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh MJ. Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques. Chem Eng Process Process Intensif. 2018;133:137–47.

    Article  CAS  Google Scholar 

  24. Cheng J, Qian Z, Wang Q, Fei C, Huang W. Numerical study of heat transfer and flow characteristic of twisted tube with different cross section shapes. Heat Mass Transf. 2019;55(3):823–44.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Gorji-Bandpy M, DomiriGanji D. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev. 2015;49:444–69.

    Article  Google Scholar 

  26. Omidi M, Rabienataj Darzi AA, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137(4):1451–62.

    Article  CAS  Google Scholar 

  27. Tudorovskii TY. On the effect of spin on classical and quantum dynamics of an electron in thin twisted tubes. Math Notes. 2005;78(5–6):883–9.

    Article  Google Scholar 

  28. Grillo G, Kovařík H, Pinchover Y. Sharp two-sided heat kernel estimates of twisted tubes and applications. Arch Ration Mech Anal. 2014;213(1):215–43.

    Article  Google Scholar 

  29. Kim HR, Kim S, Kim M, Park SH, Min JK, Ha MY. Numerical study of fluid flow and convective heat transfer characteristics in a twisted elliptic tube. J Mech Sci Technol. 2016;30(2):719–32.

    Article  Google Scholar 

  30. Abbasian Arani AA, Aberoumand H, Aberoumand S, Moghaddam AJ, Dastanian M. An empirical investigation on thermal characteristics and pressure drop of Ag–oil nanofluid in concentric annular tube. Heat Mass Transf. 2016;52(8):1693–706.

    Article  CAS  Google Scholar 

  31. Abbaszadeh M, Ababaei A, Abbasian Arani AA, Abbasi Sharifabadi A. MHD forced convection and entropy generation of CuO–water nanofluid in a microchannel considering slip velocity and temperature jump. J Braz Soc Mech Sci Eng. 2017;39(3):775–90.

    Article  CAS  Google Scholar 

  32. Sayed Ahmed ESA, Mesalhy OM, Abdelatief MA. Flow and heat transfer enhancement in tube heat exchangers. Heat Mass Transf. 2015;51(11):1607–30.

    Article  CAS  Google Scholar 

  33. Abdelatief MA, Zamel AA, Ahmed SA. Elliptic tube free convection augmentation: an experimental and ANN numerical approach. Int Commun Heat Mass Transf. 2019;108:104296.

    Article  Google Scholar 

  34. Omara MA, Abdelatief MA. Experimental study of heat transfer and friction factor inside elliptic tube fixed with helical coils. Appl Therm Eng. 2018;134:407–18.

    Article  Google Scholar 

  35. Sayed Ahmed SAE, Ibrahim EZ, Ibrahim MM, Essa MA, Abdelatief MA, El-Sayed MN. Heat transfer performance evaluation in circular tubes via internal repeated ribs with entropy and exergy analysis. Appl Therm Eng. 2018;144:1056–70.

    Article  Google Scholar 

  36. Khan WA, Khan ZH, Rahi M. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl Nanosci. 2014;4:633–41.

    Article  CAS  Google Scholar 

  37. Abbasian Arani AA, Amani J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp Therm Fluid Sci. 2013;44(1):520–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Abbasian Arani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alempour, S.M., Abbasian Arani, A.A. & Najafizadeh, M.M. Numerical investigation of nanofluid flow characteristics and heat transfer inside a twisted tube with elliptic cross section. J Therm Anal Calorim 140, 1237–1257 (2020). https://doi.org/10.1007/s10973-020-09337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09337-z

Keywords

Navigation