Skip to main content
Log in

Comparative transcriptome analysis reveals an ABA-responsive regulation network associated with cell wall organization and oxidation reduction in sugar beet

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) is an essential phytohormone and plays a key role in root architecture and plant stress responses. However, the ABA signalling pathway and its regulatory network in sugar beet roots remain unclear. Here, we carried out a time course experiment and performed global transcriptome profiling via strand-specific RNA sequencing (ssRNA-seq) to evaluate the response of sugar beet plants to exogenous ABA. According to the expression patterns of 5625 differentially expressed transcription units (TUs), the ABA-responsive stages within 24 h were divided into the early (1 h), intermediate (6 h and 12 h) and late (24 h) stages. Gene Ontology (GO) analysis revealed that oxidation reduction (GO: 0055114) and cell wall organization (GO: 0071555) were enriched in all ABA-responsive stages. For oxidation reduction, genes encoding cytochromes, peroxidases (PODs) and 2-oxoglutarate and Fe(II)-dependent oxygenases (2OG-Fe(II)s) constituted the largest proportion. ABA-responsive xyloglucan endotransglucosylase/hydrolase (XTH), expansin A (EXPA), pectinesterase (PME), pectate lyase (PL) and cellulose synthase (CES) were also detected in terms of cell wall organization. By performing regulation prediction and co-expression analysis, we determined that three genes, one encoding an AP2 domain-containing transcription factor (TF) and two encoding Dof domain-containing TFs (BVRB_4g074790, BVRB_8g180860 and BVRB_9g211370, respectively) may play an important role in the regulation of oxidation reduction and cell wall organization. Our profiling of ABA-responsive genes provides valuable information for understanding the molecular functions of regulatory genes and will aid in the future molecular breeding of sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw data of ssRNA-seq was deposited in Sequence Read Archive (PRJNA594791).

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2014) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    PubMed  PubMed Central  Google Scholar 

  • Asthir B, Kaur S, Mann SK (2009) Effect of salicylic and abscisic acid administered through detached tillers on antioxidant system in developing wheat grains under heat stress. Acta Physiol Plant 31:1091–1096

    CAS  Google Scholar 

  • Avramova Z (2017) The JA- and ABA-signaling pathways crosstalk during one, but not repeated, dehydration stresses: a non-specific “panicky”, or a meaningful response? Plant Cell Environ 40:1704–1710

    CAS  PubMed  Google Scholar 

  • Blee K, Choi JW, O’Connell AP, Jupe SC, Schuch W, Lewis NG, Bolwell GP (2001) Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry 57:1159–1166

    CAS  PubMed  Google Scholar 

  • Boudsocq M, Droillard M-J, Barbier-Brygoo H, Laurière C (2007) Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol 63:491–503

    CAS  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 4:361–366

    CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim S (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    CAS  PubMed  Google Scholar 

  • Cousson A (2003) Two potential Ca(2+)-mobilizing processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. J Plant Physiol 160:493–501

    CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  • Dana M, Xiaoming C, Coates RM, Peters RJ (2010) Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. Biochem J 431:337–344

    Google Scholar 

  • Das S, Kar RK (2017) Abscisic acid mediated differential growth responses of root and shoot of Vigna radiata (L.) Wilczek seedlings under water stress. Plant Physiol Biochem 123:213–221

    PubMed  Google Scholar 

  • David N, Danièle WR (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Google Scholar 

  • Ding L, Li Y, Wang Y, Gao L, Wang M, Chaumont F, Shen Q, Guo S (2016) Root ABA accumulation enhances rice seedling drought tolerance under ammonium supply: interaction with aquaporins. Front Plant Sci 7:1206

    PubMed  PubMed Central  Google Scholar 

  • Dohm JC, Minoche AE, Daniela H, Salvador CG, Falk Z, Hakim T, Oliver R, Thomas Rosleff S, Ralf S, Richard R (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546

    CAS  PubMed  Google Scholar 

  • Eriksson S, Stransfeld L, Adamski NM, Breuninger H, Lenhard M (2010) CYP78A5-dependent growth signaling coordinates floral organ growth in Arabidopsis. Curr Biol 20:527–532

    CAS  PubMed  Google Scholar 

  • Gil JF, Liebe S, Thiel H, Lennfors BL, Kraft T, Gilmer D, Maiss E, Varrelmann M, Savenkov EI (2018) Massive up-regulation of LBD transcription factors and EXPANSINs highlights the regulatory programs of rhizomania disease. Mol Plant Pathol 19:2333–2348

    Google Scholar 

  • Gui G, Ji Y (2015) Sugar beet production and industry in China. Sugar Tech 17:13–21

    Google Scholar 

  • Ha Y, Shang Y, Nam KH (2016) Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J Exp Bot 67:6297–6308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Keyi H, Yajun L, Tianming J, Guoliang M, Yumei Q, Peiqiang W, Xinlong D, Liping G, Tao X (2017) Functional analysis of two flavanone-3-hydroxylase genes from Camellia sinensis: a critical role in flavonoid accumulation. Genes 8:300

    PubMed Central  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    CAS  PubMed  Google Scholar 

  • Huang J, Tang D, Shen Y, Qin B, Hong L, You A, Li M, Wang X, Yu H, Gu M (2010) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics 37:23–36

    CAS  PubMed  Google Scholar 

  • Hyles J, Vautrin S, Pettolino F, Macmillan C, Stachurski Z, Breen J, Berges H, Wicker T, Spielmeyer W (2017) Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J Exp Bot 68:1519–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    CAS  PubMed  Google Scholar 

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045

    CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Choi KI, Khan AL, Waqas M, Lee IJ (2016) Exogenous application of abscisic acid regulates endogenous gibberellins homeostasis and enhances resistance of oriental melon (Cucumis melo var. L.) against low temperature. Sci Hortic 207:41–47

    CAS  Google Scholar 

  • Kitaoka N, Kawaide H, Amano N, Matsubara T, Nabeta K, Takahashi K, Matsuura H (2014) CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. Phytochemistry 99:6–13

    CAS  PubMed  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for bisualization and analysis of biological networks. Methods Mol Biol 696:291–303

    CAS  PubMed  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2014) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. Embo J 23:1647–1656

    Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. Embo J 22:2623–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leng P, Zhang Y, Du Y, Wang J, Jiang L, Kai W, Liang B, Zhai X, Sun Y, Liu H (2018) Expression pattern of ABA metabolic and signalling genes during floral development and fruit set in sweet cherry. Plant Growth Regul 84:71–80

    CAS  Google Scholar 

  • Lijavetzky D, Carbonero P, Vicente-Carbajosa J (2003) Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 3:17–10

    PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Malaga S, Janeczko A, Janowiak F, Waligórski P, Oklestkova J, Dubas E, Krzewska M, Nowicka A, Surówka E, Rapacz M, Wójcik-Jagła M, Kopeć P, Hura T, Ostrowska A, Kaczanowska K, Żur I (2020) Involvement of homocastasterone, salicylic and abscisic acids in the regulation of drought and freezing tolerance in doubled haploid lines of winter barley. Plant Growth Regul 90:173–188

    CAS  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    CAS  PubMed  Google Scholar 

  • Ohkuma K, Lyon JL, Addicott FT, Smith OE (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142:1592–1593

    CAS  PubMed  Google Scholar 

  • Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S (2005) ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol 139:1185–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Tsz-fung FC (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Wang L, Yang YF, Zou MM, He WY, Wang Y, Wang Q, Vasseur L, You MS (2017) Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis. Gene 637:90–99

    CAS  PubMed  Google Scholar 

  • Pospíšilová J, Baťková P (2004) Effects of pre-treatments with abscisic acid and/or benzyladenine on gas exchange of French bean, sugar beet, and maize leaves during water stress and after rehydration. Biol Plant 48:395–399

    Google Scholar 

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puértolas J, Conesa MR, Ballester C, Dodd IC (2015) Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. J Exp Bot 66:2325–2334

    PubMed  Google Scholar 

  • Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62

    CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    CAS  PubMed  Google Scholar 

  • Koyama R, Roberto RS, Souza RT, Borges WFS, Anderson M, Waterhouse AL, Cantu D, Fidelibus MW, Balnco-Ulate B (2018) Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in Vitis vinifera × Vitis labrusca table grapes in a subtropical region. Front Plant Sci 9:323

    PubMed  PubMed Central  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rupasinghe S, Duan H (2010) Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana. Proteins 68:279–293

    Google Scholar 

  • Saftner RA, Wyse RE (1984) Effect of plant hormones on sucrose uptake by sugar beet root tissue discs. Plant Physiol 74:951–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt K, Pflugmacher M, Klages S, Mäser A, Mock A, Stahl DJ (2010) Accumulation of the hormone abscisic acid (ABA) at the infection site of the fungus Cercospora beticola supports the role of ABA as a repressor of plant defence in sugar beet. Mol Plant Pathol 9:661–673

    Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3’-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    CAS  PubMed  Google Scholar 

  • Shimada Y, Fujioka SN, Kushiro M, Takatsuto S, Nomura T (2001) Brassinosteroid-6-oxidases from arabidopsis and tomato catalyze multipleC-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shu K, Zhou W, Yang W (2018) APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism. New Phytol 217:977–983

    CAS  PubMed  Google Scholar 

  • SöDerman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol 124:1752–1765

    PubMed  PubMed Central  Google Scholar 

  • Soon F-F, Ng L-M, Zhou XE, West GM, Kovach A, Tan ME, Suino-Powell KM, He Y, Xu Y, Chalmers MJ (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    CAS  PubMed  Google Scholar 

  • Thornton LE, Rupasinghe SG, Peng H, Schuler MA, Neff MM (2010) Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids. Plant Mol Biol 74:167–181

    CAS  PubMed  Google Scholar 

  • Tian LX, Li J (2018) The effects of exogenous ABA applied to maize (Zea mays L.) roots on plant responses to chilling stress. Acta Physiol Plant 40:77

    Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    CAS  PubMed  Google Scholar 

  • Wang T, Li C, Wu Z, Jia Y, Wang H, Sun S, Mao C, Wang X (2017) Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. Front Plant Sci 8:1121

    PubMed  PubMed Central  Google Scholar 

  • Wei K, Chen H (2018) Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 19:35

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Liang C (2017) Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid. Environ Sci Pollut R 24:1–11

    Google Scholar 

  • Xu P, Chen H, Ying L, Cai W (2016) AtDOF5.4/OBP4, a DOF Transcription factor gene that negatively regulates cell cycle progression and cell expansion in Arabidopsis thaliana. Sci Rep 6:27705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Yadav PK, Yadav D, Yadav KDS (2009) Pectin lyase: a review. Process Biochem 44:1–10

    Google Scholar 

  • Yang WB, Wang ZL, Yin YP, Wen-Yang LI, Yong LI, Chen XG, Wang P, Chen EY, Guo JX, Cai T (2011) Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Sci Agric Si 44:2673–2682

    CAS  Google Scholar 

  • Zhang YY, Zhang BV, Yan DW, Dong WX, Yang WB, Li Q, Zeng LJ, Wang JJ, Wang LY, Hicks LM, He ZH (2011) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67:342–353

    CAS  PubMed  Google Scholar 

  • Zhang Y, Nan J, Yu B (2016) OMICS technologies and applications in sugar beet. Front Plant Sci 7:900

    PubMed  PubMed Central  Google Scholar 

  • Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L (2016) Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol 171:2810–2825

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Sugar Beet Germplasm Resources Platform (NICGR-2019-017), China agriculture research system (CARS-170111), The Project of Species, Varieties and Resources Conservation Fee (19190171), Fundamental Research Fund for the Provincial Universities Basal Research Project in Heilongjiang Province (KJCXZD201716, RCCXYJ201810 and KJCXZD201714), Postdoctoral Science Foundation of Heilongjiang (LBH-Z18236), Youth Program of National Nature Science Foundation of China (#31601229) and Science Foundation Project of Heilongjiang Province (C2018053).

Author information

Authors and Affiliations

Authors

Contributions

WX, YZ, MW and DL performed the experimental work. XL, ZP and QW participated in the bioinformatics and statistical analysis. ZP, JL and WX wrote and edited manuscript. ZW conceived and directed the overall concept of this work.

Corresponding author

Correspondence to Zedong Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Pi, Z., Liu, J. et al. Comparative transcriptome analysis reveals an ABA-responsive regulation network associated with cell wall organization and oxidation reduction in sugar beet. Plant Growth Regul 91, 127–141 (2020). https://doi.org/10.1007/s10725-020-00592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00592-6

Keywords

Navigation