Skip to main content
Log in

Linking sensitivity of photosystem II to UV-B with chloroplast ultrastructure and UV-B absorbing pigments contents in A. thaliana L. phyAphyB double mutants

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Our recent studies showed that A. thaliana L. phyAphyB double mutants (DM) grown under red light (RL) and white light (WL) had higher photosystem II (PSII) vulnerability to UV-B than wild type (WT). The present work was aimed at revealing the mechanistic basis for this difference by analyzing the content of UV-absorbing pigments (UAPs) and chloroplast ultrastructure in leaves of DM and WT grown under different light conditions, of different photoperiods (12, 16 and 24 h) and light quality (WL vs RL). The content of UAPs in leaves of WT plants grown under RL showed a strong dependence of photoperiod and decreased in a sequence 24 h > 16 h > 12 h. In all treatments, contents of UAPs were higher in WT compared to mutant plants. While 1 h of UV treatment had only a small impact on chloroplast ultrastructure, it substantially inhibited PSII activity (maximum and effective PSII quantum yields). In all treatments, the UV-induced decreases of PSII activities were compared with each other. At any photoperiod, decreases in PSII activity were smaller in WT compared to that in mutant plants. Higher UAPs contents led to lesser PSII inhibition, while low UAPs contents resulted in strong decline in PSII activity. The results demonstrate that content of UAPs significantly contributes to PSII resistance to short-time UV-B exposures, and decreased content of UAPs in phytochrome double mutant can explain the reduced PSII resistance of these plants to UV-B radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Car:

Carotenoids

Chl:

Chlorophyll

DM:

Phytochrome A, phytochrome B double mutant

PA:

Photosynthetic apparatus

PSII:

Photosystem II

PhyB:

Phytochrome B

PhyA:

Phytochrome A

RL:

Red light

UAPs:

UV-absorbing pigments

WL:

White light

WTv:

Wild type

References

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthes. Photosynth Res 98:541–550

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66

    CAS  PubMed  Google Scholar 

  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water use efficiency in Arabidopsis. Plant Physiol 150:1083–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho RF, Campos ML, Azevedo RA (2011) The role of phytochrome in stress tolerance. J Integr Plant Biol 53:920–929

    CAS  PubMed  Google Scholar 

  • Carvalho RF, Moda LR, Silva GP, Gavassi MA, Prado RM (2016) Nutrition in tomato (Solanum lycopersicum L) as affected by light: revealing a new role of phytochrome. Aust J Crop Sci 10:331–335

    CAS  Google Scholar 

  • Chapple CC, Vogt T, Ellis BE, Sommerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-J, Inbaraj BS, Chen B-H (2012) Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography Tandem Mass Spectrometry coupled with a post-column derivatization technique. Int J Mol Sci 13:260–228

    CAS  PubMed  Google Scholar 

  • Czégény G, Matai A, Hideg E (2016) UV-B effects on leaves: oxidative stress and acclimation in controlled environments. Plant Sci 248:57–63

    PubMed  Google Scholar 

  • Day TA (2001) Multiple trophic levels in UV-B assessments: completing the ecosystem. New Phytol 152:181–186

    Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EJ, Seidlitz HK, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28(5):591–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59:1673–1685

    CAS  PubMed  Google Scholar 

  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 6:11–24

    Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavassi MA, Monteiro CC, Campos ML, Melo HC, Carvalho RF (2017) Phytochromes are key regulators of abiotic stress responses in tomato. Sci Hortic 22:126–135

    Google Scholar 

  • He J, Huang LK, Whitecoss MI (1994) Chlorophyll ultrastructure changes in Pisum sativum associated with supplementary ultraviolet (UV-B) radiation. Plant Cell Environ 17:771–775

    Google Scholar 

  • Ismail H, Maksimovic JD, Maksimovic V, Shabala L, Shabala L, Živanović BD, Tian Y, Jacobsen S-E, Shabala S (2016) Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Funct Plant Biol 43(1):75–86

    CAS  Google Scholar 

  • Julkunen-Tiitto R, Nenadis N, Neugart S, Robson M, Agati G, Vepsäläinen J, Zipoli G, Nybakken L, Winkler B, Jansen MAK (2015) Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem Rev 14:273–297

    CAS  Google Scholar 

  • Khudyakova AY, Kreslavski VD, Shirshikova GN, Zharmukhamedov SK, Kosobryukhov AA, Allakhverdiev SI (2017) Resistance of Arabidopsis thaliana L. photosynthetic apparatus to UV-B is reduced by deficit of phytochromes B and A. J Photochem Photobiol B 169:41–46

    CAS  PubMed  Google Scholar 

  • Kreslavski VD, Shirshikova GN, Lyubimov VY, Shmarev AN, Boutanaev AM, Kosobryukhov AA, Schmitt FJ, Friedrich T, Allakhverdiev SI (2013) Effect of Preillumination with red light on photosynthetic parameters and pro-/antioxidant balance in wild type and mutant hy2 Arabidopsis thaliana in response to UV-A. J Photochem Photobiol B 127:229–236

    CAS  PubMed  Google Scholar 

  • Kreslavski VD, Kosobryukhov AA, Shmarev AN, Aksenova NP, Konstantinova TN, Golyanovskaya SA, Romanov GA (2015) Introduction of the Arabidopsis PHYB gene increases resistance of photosynthetic apparatus in transgenic Solanum tuberosum plants to UV-B radiation. Russ J Plant Physiol 62:204–209

    CAS  Google Scholar 

  • Kreslavski VD, Los DA, Schmitt FJ, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI (2018) The impact of the phytochromes on photosynthetic processes. Biochim Biophys Acta 1859:400–408

    CAS  Google Scholar 

  • Kreslavski VD, Shmarev AN, Lyubimov VY, Semenova GA, Zharmukhamedov SK, Shirshikova GN, Khudyakova AY, Allakhverdiev SI (2018) Response of photosynthetic apparatus in Arabidopsis thaliana L. mutant deficient in phytochrome A and B to UV-B. Photosynthetica 56:418–426

    CAS  Google Scholar 

  • Kulbat K (2016) The role of phenolic compounds in plant resistance. Biotechnol Food Sci 80(2):97–108

    Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell 5:171–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Mirecki RM, Teramura AH (1984) Effect of ultraviolet B irradiance on soybean. V. The dependence of plant sensitivity on photosynthesis flux density during and after leaf expansion. Plant Physiol 74:475–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol 102:269–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Google Scholar 

  • Rusaczonek A, Czarnocka W, Kacprzak S, Witoń D, Ślesak I, Szechyńska-Hebda M, Gawroński P, Karpiński S (2015) Role of phytochromes A and B in the regulation of cell death and acclamatory responses to UV stress in Arabidopsis thaliana. J Exp Bot 66:6679–6695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan KG, Swinny EE, Winefield C, Markham KR (2001) Flavonoids and UV photoprotection in Arabidopsis mutants. Z Nat 56:745–754

    CAS  Google Scholar 

  • Semenova GA, Romanova AK (2011) Crystals in sugar beet (Beta vulgaris L.) leaves. Cell Tissue Biol 5:74–80

    Google Scholar 

  • Sicora C, Mate Z, Vass I (2003) The interaction of visible and UV-B light during photodamage and repair of photosystem II. Photosynth Res 75:127–137

    CAS  PubMed  Google Scholar 

  • Sineshchekov VA (2010) Fluorescence and photochemical investigations of phytochrome in higher plants. J Bot. https://doi.org/10.1155/2010/358372

    Article  Google Scholar 

  • Solovchenko A, Merzlyak M (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ J Plant Physiol 55(6):719–737

    CAS  Google Scholar 

  • Strid AW, Chow WS, Anderson JM (1994) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489

    CAS  PubMed  Google Scholar 

  • Sytar O, Zvisak M, Bruckova K, Brestic M, Hemmerich I, Cornelia R, Simko I (2018) Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci Hortic (Amsterdam) 239:193–204

    CAS  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D, Degl’Innocenti E, Giordano C, Massai R, Agati G (2005) On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol 167:457–470

    CAS  PubMed  Google Scholar 

  • Tevini M, Braun J, Fieser G (1991) The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem Photobiol 53:329–333

    CAS  Google Scholar 

  • Thiele A, Herold M, Lenk I, Quail PH, Gatz C (1999) Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol 120:73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rensen JJS, Vredenberg WJ, Rodrigues GC (2007) Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence. Photosynth Res 94:291–297

    PubMed  PubMed Central  Google Scholar 

  • Vijayan P, Browse J (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol 129:876–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Zhou JJ, Wang YY, Gu JW, Xie XZ (2013) Positive regulation of phytochrome B on chlorophyll biosynthesis and chloroplast development in rice. Rice Sci 20:243–248

    Google Scholar 

Download references

Acknowledgements

The work was supported by Grants from the Russian Foundation for Basic Research (Nos: 18-34-00613; 17-04-01289)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreslavski, V.D., Huang, X., Semenova, G. et al. Linking sensitivity of photosystem II to UV-B with chloroplast ultrastructure and UV-B absorbing pigments contents in A. thaliana L. phyAphyB double mutants. Plant Growth Regul 91, 13–21 (2020). https://doi.org/10.1007/s10725-020-00584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00584-6

Keywords

Navigation