Skip to main content
Log in

Heavy hadron molecules in effective field theory: the emergence of exotic nuclear landscapes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Heavy hadron molecules were first theorized from a crude analogy with the deuteron and the nuclear forces binding it, a conjecture which was proven to be on the right track after the discovery of the X(3872). However, this analogy with nuclear physics has not been seriously exploited beyond a few calculations in the two- and three-body sectors, leaving a great number of possible theoretical consequences unexplored. Here we show that nuclear and heavy hadron effective field theories are formally identical: using a suitable notation, there is no formal difference between these two effective field theories. For this, instead of using the standard heavy superfield notation, we have written the heavy hadron interactions directly in terms of the light quark degrees of freedom. We give a few examples of how to exploit this analogy, e.g. the calculation of the two-pion exchange diagrams. Yet the most relevant application of the present idea is the conjecture of exotic nuclear landscapes, i.e. the possibility of few heavy hadron bound states with characteristics similar to those of the standard nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Being a theoretical manuscript, there are no specific data associated to the ideas I discuss.].

Notes

  1. In particular this potential explains why the \(Z_c\) and \(Z_c'\) resonances appear in pairs [24], why the same happens for the \(Z_b\) and \(Z_b'\) resonances [21, 55, 86], and why we have a hidden-charm and hidden-bottom version of them [24]. Besides, this potential also leads to the prediction of a \(2^{++}\)\(D^* {\bar{D}}^*\) molecular partner of the X(3872) [68, 69], though this partner has not been experimentally observed. Recently a similar HQSS contact-range potential has been derived for the \(P \varSigma _Q\), \(P^* \varSigma _Q\), \(P \varSigma _Q^*\) and \(P^* \varSigma _Q^*\) molecules [32], which in turn has been proven to be surprisingly useful to explain the recently observed LHCb pentaquark trio [20] as hadronic molecules belonging to the same HQSS multiplet [33].

  2. We notice in passing that as for now the only doubly heavy baryon that has been experimentally observed is the \(\varXi _{cc}^{++}\) by the LHCb [87].

  3. For the charmed-bottom baryons, besides the \(\varXi _{bc}\) and \(\varXi _{bc}^*\) configurations in which the spin of the heavy diquark is \(S_H=1\), there is also a \(\varXi _{bc}'\) configuration in which the heavy diquark spin is \(S_H=0\). For the \(\varXi _{bc}'\) the rule is \(\langle \varXi _{bc}' | \varvec{\sigma }_L | \varXi _{bc}' \rangle = \varvec{\sigma }\).

  4. Actually, this can be easily taken into account by writing the contact-range Lagrangian with projectors, i.e. \({\mathcal {L}} = \sum _\alpha C_\alpha (N^T P_{\alpha } N)^{\dagger } (N^T P_{\alpha } N)\), with \(\alpha \) the spin-isospin channel we are considering and \(P_{\alpha }\) a suitable projector (plus a similar expression for the light-quark subfield).

    For the two-nucleon case, which are fermions, we end up with two S-wave coupling, while for the two heavy-hadron case, which can be either fermions (\(\varXi _{QQ}\), \(\varXi _{QQ}^*\)) or bosons (P, \(P^*\)), we end up with four S-wave couplings.

  5. The Feynman rules are identical in both cases because the same formalism is being used for the heavy fields, independently of whether they are heavy hadrons [81, 82] or nucleons [93, 94].

  6. The reduced mass of a system of two \(\varXi _{cc}\) baryons is about twice the one of a system of two charmed mesons. The square of the axial coupling is nine times smaller. Compounded together, the conclusion is that OPE is 4–5 times weaker in the \(\varXi _{cc} \varXi _{cc}\) system than in the \(D^* D^*\) one.

  7. Here it is interesting to notice that the \(\varXi _{cc}^{++}\) is about half the size of the proton: while the electromagnetic radius of the latter is about \(\sqrt{{\langle r^2_{e.m.} \rangle }_p} \simeq 0.83\,\mathrm{fm}\) [109], for the former we have \(0.4\,\mathrm{fm}\) according to the lattice calculation of Ref. [110].

    This implies that the charming triton is closer to the universal limit than the standard triton, as its size is comparatively larger in relation to its constituents.

  8. Notice that we are not making the explicit distinction between the three- and four-body Efimov effect that is sometimes done in the literature.

  9. Preliminary numerical explorations are being conducted by Kirscher, König and Yang, though no definite conclusion has been reached yet.

References

  1. M. Voloshin, L. Okun, JETP Lett. 23, 333 (1976)

    ADS  Google Scholar 

  2. S. K. Choi et al. (Belle), Phys. Rev. Lett.91, 262001 (2003). https://doi.org/10.1103/PhysRevLett.91.262001. arXiv:hep-ex/0309032

  3. N.A. Tornqvist, (2003). arXiv:hep-ph/0308277 [hep-ph]

  4. M.B. Voloshin, Phys. Lett. B 579, 316 (2004). https://doi.org/10.1016/j.physletb.2003.11.014. arXiv:hep-ph/0309307 [hep-ph]

    Article  ADS  Google Scholar 

  5. E. Braaten, M. Kusunoki, Phys. Rev. D 69, 074005 (2004). https://doi.org/10.1103/PhysRevD.69.074005. arXiv:hep-ph/0311147 [hep-ph]

    Article  ADS  Google Scholar 

  6. D. Gamermann, E. Oset, Phys. Rev. D 80, 014003 (2009). https://doi.org/10.1103/PhysRevD.80.014003. arXiv:0905.0402 [hep-ph]

    Article  ADS  Google Scholar 

  7. D. Gamermann, J. Nieves, E. Oset, E. Ruiz Arriola, Phys. Rev. D81, 014029 (2010). https://doi.org/10.1103/PhysRevD.81.014029. arXiv:0911.4407 [hep-ph]

    Article  ADS  Google Scholar 

  8. C. Hanhart, YuS Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, Phys. Rev. D 85, 011501 (2012). https://doi.org/10.1103/PhysRevD.85.011501. arXiv:1111.6241 [hep-ph]

    Article  ADS  Google Scholar 

  9. M. Voloshin, Int. J. Mod. Phys. A 21, 1239 (2006). https://doi.org/10.1142/S0217751X06029041. arXiv:hep-ph/0509192 [hep-ph]

    Article  ADS  Google Scholar 

  10. S. Fleming, M. Kusunoki, T. Mehen, U. van Kolck, Phys. Rev. D 76, 034006 (2007). https://doi.org/10.1103/PhysRevD.76.034006. arXiv:hep-ph/0703168

    Article  ADS  Google Scholar 

  11. F.K. Guo, C. Hidalgo-Duque, J. Nieves, A. Ozpineci, M.P. Valderrama, Eur. Phys. J. C 74, 2885 (2014). https://doi.org/10.1103/PhysRevD.76.034006. arXiv:1404.1776 [hep-ph]

    Article  ADS  Google Scholar 

  12. F.-K. Guo, (2019). arXiv:1902.11221 [hep-ph]

  13. A. Bondar et al., (Belle), Phys. Rev. Lett. 108, 122001 (2012). https://doi.org/10.1103/PhysRevLett.108.122001. arXiv:1110.2251 [hep-ex]

  14. A. Garmash et al., (Belle), Phys. Rev. D 91, 072003 (2015). https://doi.org/10.1103/PhysRevD.91.072003. arXiv:1403.0992 [hep-ex]

  15. M. Ablikim et al., (BESIII), Phys. Rev. Lett. 110, 252001 (2013a). https://doi.org/10.1103/PhysRevLett.110.252001. arXiv:1303.5949 [hep-ex]

  16. Z.Q. Liu et al., (Belle), Phys. Rev. Lett. 110, 252002 (2013). https://doi.org/10.1103/PhysRevLett.110.252002. arXiv:1304.0121 [hep-ex]

  17. M. Ablikim et al., (BESIII), Phys. Rev. Lett. 111, 242001 (2013b). arXiv:1309.1896 [hep-ex]

  18. M. Ablikim et al., (BESIII), Phys. Rev. Lett. 113, 212002 (2014). https://doi.org/10.1103/PhysRevLett.113.212002. arXiv:1409.6577 [hep-ex]

  19. R. Aaij et al., (LHCb), Phys. Rev. Lett. 115, 072001 (2015). https://doi.org/10.1103/PhysRevLett.115.072001. arXiv:1507.03414 [hep-ex]

  20. R. Aaij et al., (LHCb), Submitted to: Phys. Rev. Lett. arXiv:1904.03947 [hep-ex] (2019)

  21. M. Voloshin, Phys. Rev. D 84, 031502 (2011). https://doi.org/10.1103/PhysRevD.84.031502. arXiv:1105.5829 [hep-ph]

    Article  ADS  Google Scholar 

  22. M. Cleven, F.-K. Guo, C. Hanhart, U.-G. Meissner, Eur. Phys. J. A 47, 120 (2011). https://doi.org/10.1140/epja/i2011-11120-6. arXiv:1107.0254 [hep-ph]

    Article  ADS  Google Scholar 

  23. Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013). https://doi.org/10.1103/PhysRevLett.111.132003. arXiv:1303.6355 [hep-ph]

    Article  ADS  Google Scholar 

  24. F.-K. Guo, C. Hidalgo-Duque, J. Nieves, M.P. Valderrama, Phys. Rev. D 88, 054007 (2013a). https://doi.org/10.1103/PhysRevD.88.054007. arXiv:1303.6608 [hep-ph]

    Article  ADS  Google Scholar 

  25. L. Roca, J. Nieves, E. Oset, Phys. Rev. D 92, 094003 (2015). https://doi.org/10.1103/PhysRevD.92.094003. arXiv:1507.04249 [hep-ph]

    Article  ADS  Google Scholar 

  26. J. He, Phys. Lett. B 753, 547 (2016). https://doi.org/10.1016/j.physletb.2015.12.071. arXiv:1507.05200 [hep-ph]

    Article  ADS  Google Scholar 

  27. C.W. Xiao, U.G. MeiSSner, Phys. Rev. D 92, 114002 (2015). https://doi.org/10.1103/PhysRevD.92.114002. arXiv:1508.00924 [hep-ph]

    Article  ADS  Google Scholar 

  28. R. Chen, X. Liu, X.-Q. Li, S.-L. Zhu, Phys. Rev. Lett. 115, 132002 (2015a). https://doi.org/10.1103/PhysRevLett.115.132002. arXiv:1507.03704 [hep-ph]

    Article  ADS  Google Scholar 

  29. H.-X. Chen, W. Chen, X. Liu, T.G. Steele, S.-L. Zhu, Phys. Rev. Lett. 115, 172001 (2015b). https://doi.org/10.1103/PhysRevLett.115.172001. arXiv:1507.03717 [hep-ph]

    Article  ADS  Google Scholar 

  30. H.-X. Chen, W. Chen, S.-L. Zhu, Phys. Rev. D 100, 051501 (2019a). https://doi.org/10.1103/PhysRevD.100.051501. arXiv:1903.11001 [hep-ph]

    Article  ADS  Google Scholar 

  31. R. Chen, Z.-F. Sun, X. Liu, S.-L. Zhu, Phys. Rev. D 100, 011502 (2019b). https://doi.org/10.1103/PhysRevD.100.011502. arXiv:1903.11013 [hep-ph]

    Article  ADS  Google Scholar 

  32. M.-Z. Liu, F.-Z. Peng, M. Sánchez Sánchez, M.P. Valderrama, Phys. Rev. D 98, 114030 (2018). https://doi.org/10.1103/PhysRevD.98.114030. arXiv:1811.03992 [hep-ph]

    Article  ADS  Google Scholar 

  33. M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. Sànchez Sànchez, L.-S. Geng, A. Hosaka, M. Pavon Valderrama, Phys. Rev. Lett. 122, 242001 (2019). https://doi.org/10.1103/PhysRevLett.122.242001. arXiv:1903.11560 [hep-ph]

    Article  ADS  Google Scholar 

  34. C.W. Xiao, J. Nieves, E. Oset, Phys. Rev. D 100, 014021 (2019). https://doi.org/10.1103/PhysRevD.100.014021. arXiv:1904.01296 [hep-ph]

    Article  ADS  Google Scholar 

  35. T.J. Burns, Eur. Phys. J. A 51, 152 (2015). https://doi.org/10.1140/epja/i2015-15152-6. arXiv:1509.02460 [hep-ph]

    Article  ADS  Google Scholar 

  36. L. Geng, J. Lu, M.P. Valderrama, Phys. Rev. D 97, 094036 (2018). https://doi.org/10.1103/PhysRevD.97.094036. arXiv:1704.06123 [hep-ph]

    Article  ADS  Google Scholar 

  37. U.-G. MeiSSner, J.A. Oller, Phys. Lett. B 751, 59 (2015). https://doi.org/10.1016/j.physletb.2015.10.015. arXiv:1507.07478 [hep-ph]

    Article  ADS  Google Scholar 

  38. M. I. Eides, V. Y. Petrov, M. V. Polyakov, (2019). arXiv:1904.11616 [hep-ph]

  39. F.-K. Guo, C. Hanhart, U.-G. MeiSSner, Q. Wang, Q. Zhao, B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018). https://doi.org/10.1103/RevModPhys.90.015004. arXiv:1705.00141 [hep-ph]

    Article  ADS  Google Scholar 

  40. N.A. Tornqvist, Z. Phys. C 61, 525 (1994). https://doi.org/10.1007/BF01413192. arXiv:hep-ph/9310247 [hep-ph]

    Article  ADS  Google Scholar 

  41. J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. Lett. 105, 232001 (2010). https://doi.org/10.1103/PhysRevLett.105.232001. arXiv:1007.0573 [nucl-th]

    Article  ADS  Google Scholar 

  42. J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. C 84, 015202 (2011). https://doi.org/10.1103/PhysRevC.84.015202. arXiv:1011.2399 [nucl-th]

    Article  ADS  Google Scholar 

  43. J.-J. Wu, B.S. Zou, Phys. Lett. B 709, 70 (2012). https://doi.org/10.1016/j.physletb.2012.01.068. arXiv:1011.5743 [hep-ph]

    Article  ADS  Google Scholar 

  44. C.W. Xiao, J. Nieves, E. Oset, Phys. Rev. D 88, 056012 (2013). https://doi.org/10.1103/PhysRevD.88.056012. arXiv:1304.5368 [hep-ph]

    Article  ADS  Google Scholar 

  45. W.L. Wang, F. Huang, Z.Y. Zhang, B.S. Zou, Phys. Rev. C 84, 015203 (2011). https://doi.org/10.1103/PhysRevC.84.015203. arXiv:1101.0453 [nucl-th]

    Article  ADS  Google Scholar 

  46. Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, S.-L. Zhu, Chin. Phys. C 36, 6 (2012). https://doi.org/10.1088/1674-1137/36/3/006. https://doi.org/10.1088/1674-1137/36/1/002. arXiv:1105.2901 [hep-ph]

  47. M. Karliner, J.L. Rosner, Phys. Rev. Lett. 115, 122001 (2015). https://doi.org/10.1103/PhysRevLett.115.122001. arXiv:1506.06386 [hep-ph]

    Article  ADS  Google Scholar 

  48. E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, T.-M. Yan, Phys. Rev. D 17, 3090 ( 1978). [Erratum: Phys. Rev.D21,313(1980)]. https://doi.org/10.1103/PhysRevD.17.3090. https://doi.org/10.1103/physrevd.21.313.2

  49. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.-M. Yan, Phys. Rev. D 21, 203 (1980). https://doi.org/10.1103/PhysRevD.21.203

    Article  ADS  Google Scholar 

  50. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Nucl. Phys. B 566, 275 (2000). https://doi.org/10.1016/S0550-3213(99)00693-8. arXiv:hep-ph/9907240 [hep-ph]

    Article  ADS  Google Scholar 

  51. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005). https://doi.org/10.1016/S0550-3213(99)00693-8. arXiv:hep-ph/0410047 [hep-ph]

    Article  ADS  Google Scholar 

  52. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011). https://doi.org/10.1140/epjc/s10052-010-1534-9. arXiv:1010.5827 [hep-ph]

    Article  ADS  Google Scholar 

  53. U. van Kolck, Nucl. Phys. A 645, 273 (1999). https://doi.org/10.1016/S0375-9474(98)00612-5. arXiv:nucl-th/9808007 [nucl-th]

    Article  ADS  Google Scholar 

  54. J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A A653, 386 (1999). https://doi.org/10.1016/S0375-9474(99)00298-5. arXiv:nucl-th/9902056 [nucl-th]

    Article  ADS  Google Scholar 

  55. T. Mehen, J.W. Powell, Phys. Rev. D 84, 114013 (2011). https://doi.org/10.1103/PhysRevD.84.114013. arXiv:1109.3479 [hep-ph]

    Article  ADS  Google Scholar 

  56. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  57. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  58. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998a). https://doi.org/10.1016/S0370-2693(98)00210-X. arXiv:nucl-th/9801034

    Article  ADS  Google Scholar 

  59. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998b). https://doi.org/10.1016/S0550-3213(98)00440-4. arXiv:nucl-th/9802075

    Article  ADS  Google Scholar 

  60. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005). https://doi.org/10.1103/PhysRevC.72.054006. arXiv:nucl-th/0506005 [nucl-th]

    Article  ADS  Google Scholar 

  61. M.C. Birse, Phys. Rev. C 74, 014003 (2006). https://doi.org/10.1103/PhysRevC.74.014003. arXiv:nucl-th/0507077 [nucl-th]

    Article  ADS  Google Scholar 

  62. M.P. Valderrama, Phys. Rev. C 83, 024003 (2011). https://doi.org/10.1103/PhysRevC.83.024003. arXiv:0912.0699 [nucl-th]

    Article  ADS  Google Scholar 

  63. M. Pavon Valderrama, Phys. Rev. C 84, 064002 (2011). https://doi.org/10.1103/PhysRevC.84.064002. arXiv:1108.0872 [nucl-th]

    Article  ADS  Google Scholar 

  64. B. Long, C.J. Yang, Phys. Rev. C 84, 057001 (2011). https://doi.org/10.1103/PhysRevC.84.057001. arXiv:1108.0985 [nucl-th]

    Article  ADS  Google Scholar 

  65. B. Long, C.J. Yang, Phys. Rev. C 85, 034002 (2012a). https://doi.org/10.1103/PhysRevC.85.034002. arXiv:1111.3993 [nucl-th]

    Article  ADS  Google Scholar 

  66. B. Long, C.J. Yang, Phys. Rev. C 86, 024001 (2012b). https://doi.org/10.1103/PhysRevC.86.024001. arXiv:1202.4053 [nucl-th]

    Article  ADS  Google Scholar 

  67. V. Baru, A.A. Filin, C. Hanhart, YuS Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, Phys. Rev. D 84, 074029 (2011). https://doi.org/10.1103/PhysRevD.84.074029. arXiv:1108.5644 [hep-ph]

    Article  ADS  Google Scholar 

  68. M.P. Valderrama, Phys. Rev. D 85, 114037 (2012). https://doi.org/10.1103/PhysRevD.85.114037. arXiv:1204.2400 [hep-ph]

    Article  ADS  Google Scholar 

  69. J. Nieves, M.P. Valderrama, Phys. Rev. D 86, 056004 (2012). https://doi.org/10.1103/PhysRevD.86.056004. arXiv:1204.2790 [hep-ph]

    Article  ADS  Google Scholar 

  70. V. Baru, E. Epelbaum, A.A. Filin, F.K. Guo, H.W. Hammer, C. Hanhart, U.G. MeiSSner, A.V. Nefediev, Phys. Rev. D 91, 034002 (2015). https://doi.org/10.1103/PhysRevD.91.034002. arXiv:1501.02924 [hep-ph]

    Article  ADS  Google Scholar 

  71. V. Baru, E. Epelbaum, A.A. Filin, C. Hanhart, U.-G. MeiSSner, A.V. Nefediev, Phys. Lett. B 763, 20 (2016). https://doi.org/10.1016/j.physletb.2016.10.008. arXiv:1605.09649 [hep-ph]

    Article  ADS  Google Scholar 

  72. V. Baru, E. Epelbaum, A.A. Filin, C. Hanhart, A.V. Nefediev, JHEP 06, 158 (2017). https://doi.org/10.1007/JHEP06(2017)158. arXiv:1704.07332 [hep-ph]

    Article  ADS  Google Scholar 

  73. L. Meng, B. Wang, G.-J. Wang, S.-L. Zhu, Phys. Rev. D 100, 014031 (2019). https://doi.org/10.1103/PhysRevD.100.014031. arXiv:1905.04113 [hep-ph]

    Article  ADS  Google Scholar 

  74. R. Machleidt, K. Holinde, C. Elster, Phys. Rept. 149, 1 (1987). https://doi.org/10.1016/S0370-1573(87)80002-9

    Article  ADS  Google Scholar 

  75. R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)

    Article  Google Scholar 

  76. X. Liu, Z.-G. Luo, Y.-R. Liu, S.-L. Zhu, Eur. Phys. J. C 61, 411 (2009). https://doi.org/10.1140/epjc/s10052-009-1020-4. arXiv:0808.0073 [hep-ph]

    Article  ADS  Google Scholar 

  77. Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, S.-L. Zhu, Phys. Rev. D. C 84, 054002 (2011). https://doi.org/10.1103/PhysRevD.84.054002. arXiv:1106.2968 [hep-ph]

    Article  ADS  Google Scholar 

  78. M.-Z. Liu, T.-W. Wu, J.-J. Xie, M. Pavon Valderrama, L.-S. Geng, Phys. Rev. D 98, 014014 (2018). https://doi.org/10.1103/PhysRevD.98.014014. arXiv:1805.08384 [hep-ph]

    Article  ADS  Google Scholar 

  79. F.-L. Wang, R. Chen, Z.-W. Liu, X. Liu, (2019a). arXiv:1905.03636 [hep-ph]

  80. A.V. Manohar, M.B. Wise, Nucl. Phys. B 399, 17 (1993). arXiv:hep-ph/9212236 [hep-ph]

    Article  ADS  Google Scholar 

  81. N. Isgur, M.B. Wise, Phys. Lett. B 232, 113 (1989). https://doi.org/10.1016/0370-2693(89)90566-2

    Article  ADS  Google Scholar 

  82. N. Isgur, M.B. Wise, Phys. Lett. B 237, 527 (1990). https://doi.org/10.1016/0370-2693(90)91219-2

    Article  ADS  Google Scholar 

  83. N. Isgur , M. B. Wise, International Conference on Hadron Spectroscopy (HADRON 91) (Preceded by Summer Course on Hadron Spectroscopy, Aug 5-9) College Park, Maryland, August 12-16, 1991. Adv. Ser. Direct. High Energy Phys.10, 234 (1992). https://doi.org/10.1142/9789814503587_0004

    Google Scholar 

  84. J.M. Flynn, N. Isgur, J. Phys. G 18, 1627–1644 (1992)

    Article  ADS  Google Scholar 

  85. J.M. Flynn, N. Isgur, J. Phys. G 18, 1627 (1992). https://doi.org/10.1088/0954-3899/18/10/004. arXiv:hep-ph/9207223 [hep-ph]

    Article  ADS  Google Scholar 

  86. A.E. Bondar, A. Garmash, A.I. Milstein, R. Mizuk, M.B. Voloshin, Phys. Rev. D 84, 054010 (2011). https://doi.org/10.1103/PhysRevD.84.054010. arXiv:1105.4473 [hep-ph]

    Article  ADS  Google Scholar 

  87. R. Aaij et al. (LHCb), Phys. Rev. Lett.119, 112001 (2017). arXiv:1707.01621 [hep-ex] https://doi.org/10.1103/PhysRevLett.119.112001

  88. J. Hu, T. Mehen, Phys. Rev. D 73, 054003 (2006). https://doi.org/10.1103/PhysRevD.73.054003. arXiv:hep-ph/0511321 [hep-ph]

    Article  ADS  Google Scholar 

  89. F.-K. Guo, C. Hidalgo-Duque, J. Nieves, M.P. Valderrama, Phys. Rev. D 88, 054014 (2013b). https://doi.org/10.1103/PhysRevD.88.054014. arXiv:1305.4052 [hep-ph]

    Article  ADS  Google Scholar 

  90. J.-X. Lu, L.-S. Geng, M.P. Valderrama, Phys. Rev. D 99, 074026 (2019). https://doi.org/10.1103/PhysRevD.99.074026. arXiv:1706.02588 [hep-ph]

    Article  ADS  Google Scholar 

  91. S. Ahmed et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 251801 (2001). arXiv:hep-ex/0108013 [hep-ex]. https://doi.org/10.1103/PhysRevLett.87.251801

  92. A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D 65, 032003 (2002). arXiv:hep-ex/0108043 [hep-ex]. https://doi.org/10.1103/PhysRevD.65.032003

  93. E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991). https://doi.org/10.1016/0370-2693(91)90266-S

    Article  ADS  Google Scholar 

  94. V. Bernard, N. Kaiser, J. Kambor, U.G. Meissner, Nucl. Phys. B 388, 315 (1992). https://doi.org/10.1016/0550-3213(92)90615-I

    Article  ADS  Google Scholar 

  95. R. Machleidt, D.R. Entem, Phys. Rept. 503, 1 (2011). https://doi.org/10.1016/j.physrep.2011.02.001. arXiv:1105.2919 [nucl-th]

    Article  ADS  Google Scholar 

  96. M.J. Savage, M.B. Wise, Phys. Lett. B 248, 177 (1990). https://doi.org/10.1016/0370-2693(90)90035-5

    Article  ADS  Google Scholar 

  97. H. Xu, B. Wang, Z.-W. Liu, X. Liu, Phys. Rev. D 99, 014027 (2019). https://doi.org/10.1103/PhysRevD.99.014027. arXiv:1708.06918 [hep-ph]

    Article  ADS  Google Scholar 

  98. B. Wang, Z.-W. Liu, X. Liu, Phys. Rev. D 99, 036007 (2019b). https://doi.org/10.1103/PhysRevD.99.036007. arXiv:1812.04457 [hep-ph]

    Article  ADS  Google Scholar 

  99. S. König, H.W. GrieSShammer, H.W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017). https://doi.org/10.1103/PhysRevLett.118.202501. arXiv:1607.04623 [nucl-th]

    Article  ADS  Google Scholar 

  100. M.-Z. Liu, T.-W. Wu, M. Pavon Valderrama, J.-J. Xie, L.-S. Geng, Phys. Rev. D 99, 094018. https://doi.org/10.1103/PhysRevD.99.094018. arXiv:1902.03044 [hep-ph]

  101. A. Calle Cordon, E. Ruiz Arriola, Phys. Rev. C 81, 044002 (2010). https://doi.org/10.1103/PhysRevC.81.044002. arXiv:0905.4933 [nucl-th]

    Article  ADS  Google Scholar 

  102. L. Meng, N. Li, S.-L. Zhu, Phys. Rev. D 95, 114019 (2017). https://doi.org/10.1103/PhysRevD.95.114019. arXiv:1704.01009 [hep-ph]

    Article  ADS  Google Scholar 

  103. P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999). https://doi.org/10.1016/S0375-9474(98)00650-2. arXiv:nucl-th/9811046 [nucl-th]

    Article  ADS  Google Scholar 

  104. P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000). https://doi.org/10.1016/S0375-9474(00)00205-0. arXiv:nucl-th/9906032 [nucl-th]

    Article  ADS  Google Scholar 

  105. W. Meier, W. Gloeckle, Phys. Rev. C 28, 1807 (1983). https://doi.org/10.1103/PhysRevC.28.1807

    Article  ADS  Google Scholar 

  106. H. Garcilazo, L. Mathelitsch, Phys. Rev. C 28, 1272 (1983). https://doi.org/10.1103/PhysRevC.28.1272

    Article  ADS  Google Scholar 

  107. L.H. Thomas, Phys. Rev. 47, 903 (1935). https://doi.org/10.1103/PhysRev.47.903

    Article  ADS  Google Scholar 

  108. S. König, H.W. GrieSShammer, H.W. Hammer, U. van Kolck, J. Phys. G 43, 055106 (2016). https://doi.org/10.1088/0954-3899/43/5/055106. arXiv:1508.05085 [nucl-th]

    Article  ADS  Google Scholar 

  109. W. Xiong et al., Nature 575, 147 (2019). https://doi.org/10.1038/s41586-019-1721-2

    Article  ADS  Google Scholar 

  110. K.U. Can, G. Erkol, B. Isildak, M. Oka, T.T. Takahashi, JHEP 05, 125 (2014). https://doi.org/10.1007/JHEP05(2014)125. arXiv:1310.5915 [hep-lat]

    Article  ADS  Google Scholar 

  111. J. Kirscher, (2017). arXiv:1709.02821 [nucl-th]

  112. V. Efimov, Phys. Lett. B 33, 563 (1970). https://doi.org/10.1016/0370-2693(70)90349-7

    Article  ADS  Google Scholar 

  113. H.W. Hammer, L. Platter, Eur. Phys. J. A 32, 113 (2007). https://doi.org/10.1140/epja/i2006-10301-8. arXiv:nucl-th/0610105 [nucl-th]

    Article  ADS  Google Scholar 

  114. J. von Stecher, Phys. Rev. Lett. 107, 200402 (2011). https://doi.org/10.1103/PhysRevLett.107.200402. arXiv:1106.2319 [cond-mat.quant-gas]

    Article  Google Scholar 

  115. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 84, 052503 (2011). https://doi.org/10.1103/PhysRevA.84.052503. arXiv:1106.3853 [physics.atm-clus]

    Article  ADS  Google Scholar 

  116. D.V. Fedorov, A.S. Jensen, Phys. Rev. Lett. 71, 4103 (1993). https://doi.org/10.1103/PhysRevLett.71.4103

    Article  ADS  Google Scholar 

  117. F. Ciesielski, J. Carbonell, Phys. Rev. C 58, 58 (1998). https://doi.org/10.1103/PhysRevC.58.58. arXiv:nucl-th/9804031 [nucl-th]

    Article  ADS  Google Scholar 

  118. Y. Wang, W.B. Laing, J. von Stecher, B.D. Esry, Phys. Rev. Lett. 108, 073201 (2012). https://doi.org/10.1103/PhysRevLett.108.073201

    Article  ADS  Google Scholar 

  119. D. Blume, Y. Yan, Phys. Rev. Lett. 113, 213201 (2014). https://doi.org/10.1103/PhysRevLett.113.213201

    Article  ADS  Google Scholar 

  120. B. Bazak, J. Kirscher, S. König, M. Pavón Valderrama, N. Barnea, U. van Kolck, Phys. Rev. Lett. 122, 143001 (2019). https://doi.org/10.1103/PhysRevLett.122.143001. arXiv:1812.00387 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  121. M. Karliner, J.L. Rosner, Nature 551, 89 (2017). https://doi.org/10.1038/nature24289. arXiv:1708.02547 [hep-ph]

    Article  ADS  Google Scholar 

  122. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

  123. Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Phys. Rev. D 90, 094507 (2014). https://doi.org/10.1103/PhysRevD.90.094507. arXiv:1409.0497 [hep-lat]

    Article  ADS  Google Scholar 

  124. T.E.O. Ericson, G. Karl, Phys. Lett. B 309, 426 (1993). https://doi.org/10.1016/0370-2693(93)90957-J

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Johannes Kirscher, Sebastian König, Ubirajara van Kolck and Jerry Yang for discussions concerning the semi-unitary limit. This work is partly supported by the National Natural Science Foundation of China under Grant No. 11735003, the fundamental Research Funds for the Central Universities, and the Thousand Talents Plan for Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Pavon Valderrama.

Additional information

Communicated by V. Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valderrama, M.P. Heavy hadron molecules in effective field theory: the emergence of exotic nuclear landscapes. Eur. Phys. J. A 56, 109 (2020). https://doi.org/10.1140/epja/s10050-020-00099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00099-8

Navigation